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Quote the following when necessary.

A. Subgroup H of a group G:

H ≤ G ⇔ ∅ 6= H ⊆ G, xy ∈ H and x−1 ∈ H for all x, y ∈ H.

B. Order of an Element: Let g be an element of a group G. Then 〈g〉 = {gn | n ∈ Z} is a
subgroup of G. If there is a positive integer m such that gm = e, where e is the identity
element of G, |g| = min{m | gm = e, m ∈ N} and |g| = |〈g〉|. Moreover, for any integer
n, |g| divides n if and only if gn = e.

C. Lagrange’s Theorem: If H is a subgroup of a finite group G, then |G| = |G : H||H|.

D. Normal Subgroup: A subgroup H of a group G is normal if gHg−1 = H for all g ∈ G.
If H is a normal subgroup of G, then G/H becomes a group with respect to the binary
operation (gH)(g′H) = gg′H.

E. Direct Product: If gcd{m,n} = 1, then Zmn ≈ Zm ⊕ Zn and U(mn) ≈ U(m) ⊕ U(n).

F. Kernel: If φ : G → G is a group homomorphism, Ker(φ) = {x ∈ G | φ(x) = eG}, where
eG is the identity element of G.

G. Sylow’s Theorem: For a finite group G and a prime p, let Sylp(G) denote the set of Sylow
p-subgroups of G. Then Sylp(G) 6= ∅. Let P ∈ Sylp(G). Then |Sylp(G)| = |G : N(P )| ≡ 1
(mod p), where N(P ) = {x ∈ G | xPx−1 = P}.

1. Let N be a subgroup of a group G such that xg = gx for all x ∈ N and g ∈ G. (10 pts)

(a) Show that N � G.

(b) Show that if G/N is cyclic, then G is Abelian.



2

ID#: Name:

2. Let H and K be subgroups of a group G. Show the following. (25 pts)

(a) For x ∈ G, xH = H if and only if x ∈ H.

(b) HH−1 = H.

(c) If xhx−1 ∈ H for all x ∈ G and h ∈ H, then H is a normal subgroup of G.

(d) If H is a normal subgroup of G, then HK is a subgroup of G.

(e) If α : G → G is a group homomorphism, then |α(x)| | |x| for every x ∈ G of finite
order.
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3. Let G be a finite group and H a subgroup of G such that |G : H| = n. For each g ∈ G
let αg : G/H → G/H (xH 7→ gxH). (20 pts)

(a) Show that αg ∈ Sym(G/H), i.e, αg is a permutation on G/H.

(b) Show that φ : G → Sym(G/H) (g 7→ αg) is a group homomorphism.

(c) Show that Kerφ =
∩

x∈G

xHx−1.

(Hint: gxH = xH ⇔ gxHx−1 = xHx−1 and xHx−1 ≤ G.)

(d) G has a normal subgroup N such that N ≤ H and that |G/N | | n!.
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4. Answer the following questions on Abelian groups of order 80 = 24 · 5. (20 pts)

(a) Using the Fundamental Theorem of Finite Abelian Groups and list all non-isomorphic
Abelian groups of order 80 and give a brief explanation.

(b) List all Abelian groups of order 80 in your list above that have exactly three elements
of order 2. Give your reason.

(c) Determine whether or not U(200) ≈ U(220). Give your reason.
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5. Let G be a group of order 60, P a Sylow 2-subgroup, Q a Sylow 3-subgroup and R a
Sylow 5-subgroup of G. Suppose that {e} and G are the only normal subgroups of G.
Prove the following. (25 pts)

(a) Show that P is Abelian.

(b) Show that Q and R are cyclic.

(c) Show that there are exactly 6 Sylow 5-subgroups and |N(R)| = 10.

(d) Let H be a proper subgroup of G containing P . Then |H| = 4 or 12.

(e) G ≈ A5. (Hint: Show that G has a subgroup of order 12 and use 3.)

Please write your message: Comments on group theory. Suggestions for improvements of
this course. Write on the back of this sheet is also welcome.
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1. Let N be a subgroup of a group G such that xg = gx for all x ∈ N and g ∈ G. (10 pts)

(a) Show that N � G.

Soln. Let g ∈ G. Then by assumption,

gNg−1 = {gxg−1 | x ∈ N} = {x | x ∈ N} = N.

Hence N � G.

(b) Show that if G/N is cyclic, then G is Abelian.

Soln. Let G/N = 〈gN〉 = {(gN)n | n ∈ Z} = {gnN | n ∈ Z}. Let a, b ∈ G. Then
there exist n,m ∈ Z such that a ∈ gnN and b ∈ gmN . Hence there exist x, y ∈ N
such that a = gnx, b = gmy. Now using assumption, we have

ab = gnxgmy = gngmxy = gmgnyx = gmygnx = ba.

Thus G is Abelian.

2. Let H and K be subgroups of a group G. Show the following. (25 pts)

(a) For x ∈ G, xH = H if and only if x ∈ H.

Soln. Suppose xH = H. Since H is a subgroup, e ∈ H. Hence x = xe ∈ xH = H.
Thus x ∈ H. Conversely, if x ∈ H, then since H is a subgroup,

xH ⊆ HH ⊆ H = eH = xx−1H ⊆ xHH ⊆ xH.

Therefore xH = H.

(b) HH−1 = H.

Soln. Since H is a subgroup,

H = He−1 ⊆ HH−1 ⊆ H.

Therefore H = HH−1. (One can use (a) as well. HH−1 =
∪

h∈H Hh−1 =
∪

h∈H H =
H.)

(c) If xhx−1 ∈ H for all x ∈ G and h ∈ H, then H is a normal subgroup of G.

Soln. By assumption, xHx−1 ⊆ H for every x ∈ G. Since x−1 ∈ G, x−1Hx =
x−1H(x−1)−1 ⊆ H. Therefore

xHx−1 ⊆ H = x(x−1Hx)x−1 ⊆ xHx−1.

Thus xHx−1 = H for every x ∈ G, and H is a normal subgroup of G.

(d) If H is a normal subgroup of G, then HK is a subgroup of G.

Soln. Suppose H is a normal subgroup of G. Then e = ee ∈ HK and HK 6= ∅.
Let x, y ∈ HK. Then there exist h, h′ ∈ H and k, k′ ∈ K such that x = hk and
y = h′k′. Since H is normal, h′′ = kh′k−1 ∈ H and

xy = hkh′k′ = h(kh′k−1)kk′ = hh′′kk′ ∈ HK.

Similarly since h′′′ = k−1h−1k ∈ k−1H(k−1)−1 = H,

x−1 = (hk)−1 = k−1h−1 = (k−1h−1k)k−1 = h′′′k−1 ∈ HK.

Therefore HK is a subgroup of G.
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(e) If α : G → G is a group homomorphism, then |α(x)| | |x| for every x ∈ G of finite
order.

Soln. Firstly, since α(e) = α(ee) = α(e)α(e), we have e = α(e) by multiplying
α(e)−1. Let n = |x|. Then xn = e. So e = α(e) = α(xn) = α(x)n. Thus |α(x)| | n
by B.

3. Let G be a finite group and H a subgroup of G such that |G : H| = n. For each g ∈ G
let αg : G/H → G/H (xH 7→ gxH). (20 pts)

(a) Show that αg ∈ Sym(G/H), i.e, αg is a permutation on G/H.

Soln. Since αg(xH) = αg(yH) implies gxH = gyH and xH = yH, αg is one-to-
one. Since G/H is a finite set, αg is a bijection and αg ∈ Sym(G/H).

(b) Show that φ : G → Sym(G/H) (g 7→ αg) is a group homomorphism.

Soln. Since φ(gg′) = αgg′ and φ(g)φ(g′) = αgαg′ , we need to show αgg′ = αgαg′ in
Sym(G/H). This holds as

αgg′(xH) = gg′xH = g(g′xH) = αg(αg′(xH)) = (αgαg′)(xH).

Thus φ is a group homemorphism.

(c) Show that Kerφ =
∩

x∈G

xHx−1.

(Hint: gxH = xH ⇔ gxHx−1 = xHx−1 and xHx−1 ≤ G.)

Soln. g ∈ Kerφ if and only if αg = id if and only if gxH = xH for all x ∈ G.
Since gxH = xH ⇔ gxHx−1 = xHx−1 and xHx−1 is a subgroup of G, we have
g ∈ xHx−1. Thus

g ∈ Kerφ ⇔ (∀x ∈ G)[g ∈ xHx−1] ⇔ g ∈
∩

x∈G

xHx−1.

Therefore we have the assertion.

(d) G has a normal subgroup N such that N ≤ H and that |G/N | | n!.

Soln. Since |G : H| = n, Sym(G/H) ≈ Sn. Let N = Kerφ ≤ H. By first isomor-
phism theorem, G/N is isomorphic to a subgroup of Sym(G/H) and |Sym(G/H)| =
n!. Therefore |G/N | | n!.

4. Answer the following questions on Abelian groups of order 80 = 24 · 5. (20 pts)

(a) Using the Fundamental Theorem of Finite Abelian Groups and list all non-isomorphic
Abelian groups of order 80 and give a brief explanation.

Soln. Since 4 = 4, 1 + 3, 2 + 2, 1 + 1 + 2, 1 + 1 + 1 + 1, there are five isomorphism
classes of Abelian groups of order 80 = 24 · 5. They are

Z80, Z2 ⊕ Z40, Z4 ⊕ Z20, Z2 ⊕ Z2 ⊕ Z20, Z2 ⊕ Z2 ⊕ Z2 ⊕ Z10.

(b) List all Abelian groups of order 80 in your list above that have exactly three elements
of order 2. Give your reason.

Soln. For each of the Abelian groups above, elements of order 2 are in

Z2, Z2 ⊕ Z2, Z2 ⊕ Z2, Z2 ⊕ Z2 ⊕ Z2, Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2.

Hence Z2 ⊕ Z40 and Z4 ⊕ Z20 are those having three elements of order 2.
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(c) Determine whether or not U(200) ≈ U(220). Give your reason.

Soln. U(200) = U(23 · 52) ≈ U(23) ⊕ U(52) ≈ Z2 ⊕ Z2 ⊕ Z20 as all nonidentity
elements of U(23) are of order 2, and U(52) is generated by 2. (Since the order of
U(52) is 20, it suffices to show the existence of an element of order divisible by 4.
72 ≡ −1 (mod 25). So the order of 7 is four.)

U(220) = U(22 · 5 · 11) ≈ U(22)⊕U(5)⊕U(11) ≈ Z2 ⊕Z4 ⊕Z10 ≈ Z2 ⊕Z2 ⊕Z20.

Hence these groups are isomorphic.

5. Let G be a group of order 60, P a Sylow 2-subgroup, Q a Sylow 3-subgroup and R a
Sylow 5-subgroup of G. Suppose that {e} and G are the only normal subgroups of G.
Prove the following. (25 pts)

(a) Show that P is Abelian.

Soln. P is of order 4. Let a ∈ P be a nonidentity element. Then |a| = 2, 4. If
there is an element of order 4, P is cyclic and P is Abelian. Hence we may assume
that x2 = e for every x ∈ P . For x, y ∈ P , xy = xy(yx)2 = (x(yy)x)yx = yx and P
is Abelian.

(b) Show that Q and R are cyclic.

Soln. Q and R are of prime order. Let x ∈ Q and y ∈ R be nonidentity elements.
Then 1 6= |x| | 3 and 1 6= |y| | 5, and |x| = 3, |y| = 5, Therefore Q = 〈x〉 and R = 〈y〉
are both cyclic.

(c) Show that there are exactly 6 Sylow 5-subgroups and |N(R)| = 10.

Soln. Syl5(G)| ≡ 1 (mod 5) are divisors of |G| = 60, we have |Syl5(G)| = 1
or 6. If |Syl5(G)| = 1, R is normal. This contradicts our assumption. Hence
6 = |Syl5(G)| = |G : N(R)|, and |N(R)| = 10 by C.

(d) Let H be a proper subgroup of G containing P . Then |H| = 4 or 12.

Soln. Since 4 | |H|, we need to show that |H| 6= 20. Suppose |H| = 20 and R ≤ H.
Then |Syl5(H)| = 1. Thus R�H, and |N(R)| is divisible by 4. This contradicts (c).

(e) G ≈ A5. (Hint: Show that G has a subgroup of order 12 and use 3.)

Soln. Suppose |N(P )| = 4, i.e., N(P ) = P . Let g ∈ G − P . Suppose e 6= ∃z ∈
P ∩ gPg−1. Then C(z) contains both P and gPg−1 and so C(z) is a subgroup
properly containing P . This contradicts our assumption. Hence P ∩ gPg−1 = {e}
for all g 6∈ P . This is absurd as

∪
g∈G gPg−1 must contain 46 elements, while there

are 24 elements of order 5. Thus G has a subgroup H of order 12. Since |G : H| = 5,
G is isomorphic to a subgroup G of S5. Since A5 �S5, G∩A5 �G and G = A5. Note
that every Sylow 5-subgoup of S5 is in A5 and hence G∩A5 6= {e}. This proves the
assertion.


