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ID#: Name:

Quote the following when necessary.

A. Subgroup H of a group G:

H ≤ G ⇔ ∅ 6= H ⊆ G, xy ∈ H and x−1 ∈ H for all x, y ∈ H.

B. Order of an Element: Let g be an element of a group G. Then 〈g〉 = {gn | n ∈ Z} is a
subgroup of G. If there is a positive integer m such that gm = e, where e is the identity
element of G, |g| = min{m | gm = e, m ∈ N} and |g| = |〈g〉|. Moreover, for any integer
n, |g| divides n if and only if gn = e.

C. Lagrange’s Theorem: If H is a subgroup of a finite group G, then |G| = |G : H||H|.

D. Normal Subgroup: A subgroup H of a group G is normal if gHg−1 = H for all g ∈ G.
If H is a normal subgroup of G, then G/H becomes a group with respect to the binary
operation (gH)(g′H) = gg′H.

E. Direct Product: If gcd{m,n} = 1, then Zmn ≈ Zm ⊕ Zn and U(mn) ≈ U(m) ⊕ U(n).

F. Isomorphism Theorem: If α : G → G is a group homomorphism, Ker(α) = {x ∈ G |
α(x) = eG}, where eG is the identity element of G. Then α(G) ≤ G, Ker(α) is a normal
subgroup of G, and G/Ker(α) ≈ α(G).

G. Sylow’s Theorem: For a finite group G and a prime p, let Sylp(G) denote the set of Sylow
p-subgroups of G. Then Sylp(G) 6= ∅. Let P ∈ Sylp(G). Then |Sylp(G)| = |G : N(P )| ≡ 1
(mod p), where N(P ) = {x ∈ G | xPx−1 = P}.

Other Theorems: List other theorems you applied in your solutions.
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1. Let H be a subgroup of a group G. Let a, b ∈ G. Show the following. (10 pts)

(a) aH = bH if and only if a−1b ∈ H.

(b) If aH = Hb, then aH = bH.

2. Let H and K be subgroups of G. Show the following. (10 pts)

(a) If HK is a subgroup of G, then HK = KH.

(b) If hK = Kh for all h ∈ H, then HK is a subgroup of G.
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3. Let φ : G → H be an onto group homomorphism, eG is the identity element of G and eH

the identity element of H. Show the following. (20 pts)

(a) φ(eG) = eH and for a ∈ G, φ(a−1) = φ(a)−1.

(b) Kerφ = {x ∈ G | φ(x) = eH} is a normal subgroup of G.

(c) If G is cyclic, then H is cyclic.

(d) If H is Abelian, then φ(aba−1b−1) = eH for all a, b ∈ G.
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4. Answer the following questions on Abelian groups of order 162 = 2 · 34. (20 pts)

(a) Using the Fundamental Theorem of Finite Abelian Groups and list all non-isomorphic
Abelian groups of order 162.

(b) Explain that there is exactly one element of order 2.

(c) Explain that if there is only one subgroup of order 3, then it is cyclic.

(d) Let G = Z18 ⊕ Z9. Find the number of elements of order 3 and the number of
subgroups of order 3.
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5. Let Q∗ be the multiplicative group of nonzero rational numbers, and Q the additive group
of rational numbers. Show the following. (20 pts)

(a) Q∗ is not cyclic.

(b) Let H be a finite subgroup of Q∗. Then H = {1} or H = {1,−1}.

(c) Q is not isomorphic to Q∗.

(d) Let φ : Q → Q be a group automorphism. Then φ(a) = aφ(1) for every a ∈ Q and
φ(1) ∈ Q∗.
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6. Let G be a group of order 165 = 3 · 5 · 11. Let P ∈ Syl11(G) and Q ∈ Syl5(G). Show the
following. (20 pts)

(a) P is a normal subgroup of G.

(b) Suppose Q is not a normal subgroup. Let H = N(Q) = {x ∈ G | xQx−1 = Q} and
R ∈ Syl3(N(Q)).

i. |H| = 15.

ii. H = Q × R.

(c) |Syl3(G)| = 1.

Please write your message: Comments on group theory. Suggestions for improvements of
this course. Write on the back of this sheet is also welcome.
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1. Let H be a subgroup of a group G. Let a, b ∈ G. Show the following. (10 pts)

(a) aH = bH if and only if a−1b ∈ H.

Soln. Since H ≤ G, H 6= ∅. Let a ∈ H. Then a−1 ∈ H and e = aa−1 ∈ H.

Suppose aH = bH. Since e ∈ H, aH = bH implies that b = be ∈ bH = aH. Hence
there exists h ∈ H such that b = ah. Therefore by multiplying a−1 to both hand
sides from the left, a−1b = h ∈ H.

Conversely let a−1b = h ∈ H. Then b = ah and

bH = ahH ⊂ aH = aeH = ahh−1H = aa−1bh−1H ⊂ bH.

Therefore aH = bH.

(b) If aH = Hb, then aH = bH.

Soln. Since b = eb ∈ Hb = aH, there is h ∈ H such that b = ah. Hence a−1b ∈ H.
Therefore aH = bH by (a).

2. Let H and K be subgroups of G. Show the following. (10 pts)

(a) If HK is a subgroup of G, then HK = KH.

Soln. Since e ∈ H ∩ K, for h ∈ H and k ∈ K, h = he ∈ HK and k = ek ∈ HK.
Since HK is a subgroup of G, and h, k ∈ HK, kh ∈ HK. Hence KH ⊂ HK. Since
(hk)−1 ∈ HK, there exist h′ ∈ H and k′ ∈ K such that (hk)−1 = h′k′. Therefore,
hk = ((hk)−1)−1 = (h′k′)−1 = k′−1h′−1 ∈ KH. Hence HK ⊂ KH. Therefore
HK = KH.

(b) If hK = Kh for all h ∈ H, then HK is a subgroup of G.

Soln. Let h, h′ ∈ H and k, k′ ∈ K. Since h′K = Kh′ 3 kh′, there is k′′ ∈ K such
that h′k′′ = kh′. Hence hkh′k′ = hh′k′′k′ ∈ HK. Since (hk)−1 = k−1h−1 ∈ Kh−1 =
h−1K ⊂ HK. Therefore, HK is a subgroup of G.

3. Let φ : G → H be an onto group homomorphism, eG is the identity element of G and eH

the identity element of H. Show the following. (20 pts)

(a) φ(eG) = eH and for a ∈ G, φ(a−1) = φ(a)−1.

Soln. φ(eG) = φ(eG)−1φ(eG)φ(eG) = φ(eG)−1φ(eGeG) = φ(eG)−1φ(eG) = eH .
φ(a−1) = φ(a−1)φ(a)φ(a)−1 = φ(a−1a)φ(a)−1 = φ(eG)φ(a)−1 = eHφ(a)−1 = φ(a)−1.

(b) Kerφ = {x ∈ G | φ(x) = eH} is a normal subgroup of G.

Soln. Let a, b ∈ Kerφ. Then φ(ab) = φ(a)φ(b) = eHeh = eh. Hence ab ∈ Kerφ.
By (a) φ(a−1) = φ(a)−1 = e−1

H = eH . Hence a−1 ∈ Kerφ. Thus Kerφ is a subgroup
of G. Let g ∈ G, then φ(gag−1) = φ(g)φ(a)φ(g−1) = φ(g)eHφ(g)−1 = eH . Hence
gKerφg−1 ⊂ Kerφ for all g ∈ G. Since this holds for g−1 ∈ G, g−1Kerφg ⊂ Kerφ,
which implies Kerφ ⊂ gKerφg−1. Thus gKerφg−1 = Kerφ for all g ∈ G and Kerφ is
a normal subgroup of G.
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(c) If G is cyclic, then H is cyclic.

Soln. Suppose G = 〈a〉 = {an | n ∈ Z}. Let b = φ(a). Sincce φ is onto,

H = φ(G) = {φ(an) | n ∈ Z} = {φ(a)n | n ∈ Z} = {bn | n ∈ Z} = 〈b〉.

Therefore H is cyclic.

(d) If H is Abelian, then φ(aba−1b−1) = eH for all a, b ∈ G.

Soln. Since H is Abelian, φ(b)φ(a)−1 = φ(a)−1φ(b), it follows from (a) that

φ(aba−1b−1) = φ(a)φ(b)φ(a)−1φ(b)−1 = φ(a)φ(a)−1φ(b)φ(b)−1 = eH ,

for all a, b ∈ G.

4. Answer the following questions on Abelian groups of order 162 = 2 · 34. (20 pts)

(a) Using the Fundamental Theorem of Finite Abelian Groups and list all non-isomorphic
Abelian groups of order 162.

Soln.

i. Z2 ⊕ Z81 ≈ Z162.

ii. Z2 ⊕ Z3 ⊕ Z27 ≈ Z3 ⊕ Z54.

iii. Z2 ⊕ Z9 ⊕ Z9 ≈ Z9 ⊕ Z18.

iv. Z2 ⊕ Z3 ⊕ Z3 ⊕ Z9 ≈ Z3 ⊕ Z3 ⊕ Z18.

v. Z2 ⊕ Z3 ⊕ Z3 ⊕ Z3 ⊕ Z3 ≈ Z3 ⊕ Z3 ⊕ Z3 ⊕ Z6.

(b) Explain that there is exactly one element of order 2.

Soln. By above every Abelian group G of order 162 can be written as an external
direct sum of Z2 and a group H of oder 81, i.e., G ≈ Z2⊕H, For x = (a, b) ∈ Z2⊕H,
|x| = lcm{|a|, |b|}. By Lagrange’s theorem |b| is a divisor of 81. Hence if x is of order
2, x = (1, eH) and there is exactly one element of order 2.

(c) Explain that if there is only one subgroup of order 3, then it is cyclic.

Soln. The cases ii-v have 4, 4, 13, 40 subgroups of order 3. Hence the only
possibility is the first case, which is cyclic.

(d) Let G = Z18 ⊕ Z9. Find the number of elements of order 3 and the number of
subgroups of order 3.

Soln. There are 32 − 1 elements of order 3, and 4 subgroups of order 3 as each
subgroup of order 3 contains two elements of order 3.

5. Let Q∗ be the multiplicative group of nonzero rational numbers, and Q the additive group
of rational numbers. Show the following. (20 pts)

(a) Q∗ is not cyclic.

Soln. Suppose Q∗ = 〈a〉. Let a = m/n with m,n ∈ Z such that gcd{m.n} = 1.
There is a prime p such that p is coprime to m and n.. If p = ak with k ≥ 0, then
pnk = mk and p | m, a contradiction. If p = ak with k < 0, then pm−k = n−k and
p | n, a contradiction. Therefore, Q∗ is not cyclic.
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(b) Let H be a finite subgroup of Q∗. Then H = {1} or H = {1,−1}.
Soln. Let x ∈ H. Then xn = 1 for some positive integer n. Since x is a real
number and |x| = 1, x = 1 or −1. Therefore, H = {1} or H = {1,−1}.

(c) Q is not isomorphic to Q∗.

Soln. Let a ∈ Q, then na = 0 implies n = 0 or a = 0. Hence there are no elements
of order 2 in Q. Since −1 is an element of order 2 in Q∗, Q is not isomorphic to Q∗.

(d) Let φ : Q → Q be a group automorphism. Then φ(a) = aφ(1) for every a ∈ Q and
φ(1) ∈ Q∗.

Soln. If n is an integer φ(n) = φ(n1) = nφ(1), as φ is an additive group ho-
momorphism. If m is a positive integer, φ(1) = φ(m(1/m)) = mφ(1/m). Hence
φ(1/m) = (1/m)φ(1). Let a = n/m ∈ Q with m,n ∈ Z and m 6= 0. Then
φ(a) = φ(n/m) = nφ(1/m) = (n/m)φ(1) = aφ(1). If φ(1) = 0, then φ(a) = 0 for all
a ∈ Q. Since φ is a group automorphism and hence onto, φ(1) 6= 0.

6. Let G be a group of order 165 = 3 · 5 · 11. Let P ∈ Syl11(G) and Q ∈ Syl5(G). Show the
following. (20 pts)

(a) P is a normal subgroup of G.

Soln. By Sylow’s Theorem, |Syl11(G)| = |G : N(P )| ≡ 1 (mod 11). Since |G :
N(P )| is a divisor of |G|, the only possibility is 1. Therefore G = N(P ). Since
N(P ) = {x ∈ G | xPx−1 = P}, N(P ) = G implies P is normal in G.

(b) Suppose Q is not a normal subgroup. Let H = N(Q) = {x ∈ G | xQx−1 = Q} and
R ∈ Syl3(N(Q)).

i. |H| = 15.
Soln. By Sylow’s Theorem, |Syl5(G)| = |G : N(Q)| ≡ 1 (mod 5). Since
|G : N(Q)| is a divisor of |G|, the possibilities are 1 and 11. If it is 1, Q is
normal. Hence |G : N(Q)| = 11, and |H| = |N(Q)| = 15.

ii. H = Q × R.
Soln. Since H = N(Q), Q is normal in H. |Syl3(H)| = |H : NH(R)| ≡ 1
(mod 3), where NH(R) = H ∩ N(R). Since |H| = 15, the number is 1 and
H = NH(R). Therefore R is normal in H. Since |Q| = 5 and |R| = 3, |Q∩R| = 1
and H = Q × R. Note that by Problem 2 (b), QR is a subgroup of H and
QR = Q ∩ R is of order 15. Hence H = QR = Q × R.
This part shows that a group of order 15 is always cyclic and its Sylow subgroups
are normal in the group.

(c) |Syl3(G)| = 1.

Soln. Let R be a Sylow 3-subgroup. Suppose |Syl3(G)| 6= 1. Then |G : N(R)| > 1.
Since |G : N(R)| ≡ 1 (mod 3), |G : N(R)| = 55 and |N(R)| = 3. This is impossible
when Q is not normal as a |N(R)| is divisible by 5 by (b). Hence Q is normal in G.
Then QR is a group of order 15 by Problem 2(b) and again R is normal in QR by
the remark above, which implies that |N(R)| is divisible by 5. In any case, this is a
contradiction.


