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Quote the following when necessary.

A. Subgroup H of a group G-

H<Ge0W+AHCG, syc H anda™' € H forall z,y € H.

B. Order of an Element: Let g be an element of a group G. Then (g) = {¢" | n € Z} is a
subgroup of G. If there is a positive integer m such that ¢ = e, where e is the identity
element of G, |g| = min{m | g™ =e, m € N} and |g| = |(g)|. Moreover, for any integer
n, |g| divides n if and only if ¢" = e.

C. Lagrange’s Theorem: If H is a subgroup of a finite group G, then |G| = |G : H||H]|.

D. Normal Subgroup: A subgroup H of a group G is normal if gHg ! = H for all g € G.
If H is a normal subgroup of G, then G/H becomes a group with respect to the binary
operation (¢H)(¢'H) = gq'H.

E. Direct Product: If gcd(m,n) =1, then Z,,, = Z,, ® Z,, and U(mn) =~ U(m) & U(n).

F. Isomorphism Theorem: Ifa:G — G is a group homomorphism, Ker(a) = {z € G|
a(z) = ez}, where eg is the identity element of G. Then G/Ker(a) ~ a(G).

G. Sylow’s Theorem: For a finite group G and a prime p, let Syl,(G) denote the set of Sylow
p-subgroups of G. Then Syl (G) # 0. Let P € Syl,(G). Then |Syl,(G)| = |G : N(P)| =1
(mod p), where N(P) = {z € G | Pz~ = P}.

Other Theorems: List other theorems you applied in your solutions.

Please write your message: Comments on group theory. Suggestions for improvements of
this course. Write on the back of this sheet is also welcome.



1. Let H and K be subgroups of a group G. Let a,b € G. Show the following. (20 pts)

(a) aH = bH if and only if a='b € H.

(b) aKa™* <G and HNaKa™' < H.

(c) For z,y € H, zaK = yaK if and only if z7'y € HNaKa™'.

(d) If |[H| and |K]| are finite, then |HaK|= |H : H NaKa || K].



2. Let ¢ : G — H be an onto group homomorphism, e is the identity element of G and ey
the identity element of H. Show the following. (20 pts)

(a) ¢(eg) = ey and for a € G, d(a™') = ¢(a) L.

(b) Kerp ={z € G| ¢(x) = ey} is a normal subgroup of G.

(¢) The homomorphism ¢ is an isomorphism if and only if Ker¢ = {eq}.

(d) If G is Abelian, then H is Abelian.



3. Answer the following questions on Abelian groups of order 675 = 33 - 52. (20 pts)

(a) Using the Fundamental Theorem of Finite Abelian Groups, list all non-isomorphic
Abelian groups of order 675.

(b) Explain that every Abelian group of order 675 has at least 8 elements of order 15.

(c) If an Abelian group of order 675 has at most 8 elements of order 15, then it is cyclic.

(d) Let G = Zy @ Z75. Find the number of subgroups of G of order 15.



4. Let G = (a) be a cyclic group of finite order n. Show the following. (20 pts)

(a) 0: Z — G (i~ a'). Then o is an onto homomorphism and Z/nZ ~ G, where nZ
is the set of integers divisible by n.

(b) Let H be a subgroup of G of order m, and n = mh. Then H = (a").

(c) {(a’) = G if and only if ged(i,n) = 1.

(d) For z € U(n), let 0, : G — G (a* +— a*). Then o, € Aut(G), and ¢ : U(n) —
Aut(G) (z — 0,) is a group isomorphism.



5. Suppose p and ¢ are prime numbers with p > ¢, and G is a group of order pq. Let
P € Syl (G) and @ € Syl (G). Show the following. (20 pts)

(a) P is a normal subgroup of G.

(b) If @ is a normal subgroup, then G is cyclic.

(c¢) If @ is not a normal subgroup, then p = 1(mod ¢) and U(p) has a subgroup of order
q.

(d) Let p =11 and ¢ = 5. Find an element r € U(11) of order 5. Let N = (a) be a
cyclic group of order 11 and H = {1,r,7%,73,r'}. Set G = N x H. Then G is a
non-Abelian group of order 55 with respect to the following binary operation:

G x G — G ((a" 1) (@, %) — (a"7 77+%)), where 0 < h,j <10, 0 < i,k < 4.
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1. Let H be a subgroup of a group G. Let a,b € G. Show the following. (20 pts)

(a) aH = bH if and only if a='b € H.
Soln. Since H <G, H#0. Leta€ H. Thena' € H ande=aa"' € H.

Suppose aH = bH. Since e € H, aH = bH implies that b = be € bH = aH. Hence
there exists h € H such that b = ah. Therefore by multiplying a=! to both hand
sides from the left, a='b=h € H.

Conversely let a='b = h € H. Then b = ah and
bH = ahH C aH = aeH = ahh™'*H = aa"'bh™'H C bH.

Therefore aH = bH. ]

(b) aKa™* <G and HNaKa™' < H.
Soln. Clearly, e = aea™ € aKa™! and aKa™! # (. Let k, k' € K. Since K < G,
kk' € K and k' € K by (A). Hence (aka™')(ak'a™) = akk'a™ € aKa™' and
(aka™)™! = ak™'a™' € aKa™'. Thus by (A), aKa™! < G. Clearly e € HN
aKa™' C H. Since both H and aKa~! are subgroups of G, z,y € H NaKa™!
implies vy € H NaKa™ ' and 27! € HNaKa™!. Thus HNaKa ' < H. ]
(c) For z,y € H, zaK = yaK if and only if z7'y € HNaKa™' by (A).
Soln. Since aKa™' < G and zaK = yaK < x(aKa™') = y(aKa™'), we can apply
(a) to have the following; for z,y € H

vaK = yaK < v(aKa™ ') =y(aKa™') & v 'y € aKa ™.

Since x,y € H, this is equivalent to the condition 2~y € H NaKa '

(d) If |[H| and |K]| are finite, then |HaK|= |H : H NaKa || K].
Soln. Since HaK is a union of left cosets haK with h € H. Since |haK| = |K|

and there are |H : HNaKa™'| many distinct left cosets of this type by (c), |HaK| =
|H : HNaKa™'||K|. u

2. Let ¢ : G — H be an onto group homomorphism, e¢ is the identity element of G and ey
the identity element of H. Show the following. (20 pts)

(a) ¢(eq) = ey and for a € G, p(a™') = ¢(a) ™"
Soln. d(eq) = dlec)'dlea)dlec) = dleq) 'dlecec) = ¢lec) 'dleq) = en.
¢(a™!) = ¢p(a™)d(a)p(a)™! = ¢(a " a)d(a) ™! = ¢(ec)p(a)™ = end(a)™ = d(a)™".
|

(b) Ker¢ = {z € G| ¢(z) = ey} is a normal subgroup of G.
Soln. Let a,b € Kerg. Then ¢(ab) = ¢(a)p(b) = eyey = ey. Hence ab € Kero.
By (a) ¢(a™!) = ¢(a)! = e’ = ey. Hence ™ € Kerg. Thus Ker¢ is a subgroup
of G. Let g € G, then ¢(gag™") = d(9)p(a)p(g™") = ¢(g)end(9)™" = en. Hence
gKergg™! C Kerg for all g € G. Since this holds for g7! € G, g 'Kergg C Kerg,
which implies Ker¢ C gKergg!. Thus gKergg—! = Ker¢ for all g € G and Kerg is
a normal subgroup of G. ]



()

The homomorphism ¢ is an isomorphism if and only if Ker¢ = {es}.
Soln. Since ¢ is onto, it suffices to show that ¢ is one-to-one. Oberve that

d(x) = dy) & o(2)"'d(y) = ¢(a7"'y) = ey & 27"y € Ker.
Hence if Ker¢ = {eg}, ¢(z) = ¢(y) implies x = y, and ¢ is one-to-one. Suppose
it is one-to-one. Let © = e. Then y € Ker¢ implies ¢(y) = ¢(eg). Hence if ¢ is
one-to-one, y = e and Ker¢ = {eg} by (a). [ ]
If G is Abelian, then H is Abelian.

Soln. Let h,k € H. Since ¢ is onto, there are a,b € G such that h = ¢(a) and
k = ¢(b). Now

hk = ¢(a)p(b) = ¢(ab) = ¢(ba) = ¢(b)p(a) = kh.
Therefore, H is Abelian. [

3. Answer the following questions on Abelian groups of order 675 = 33 - 52. (20 pts)

(a)

(b)

Using the Fundamental Theorem of Finite Abelian Groups, list all non-isomorphic
Abelian groups of order 675.
Soln. Let ¢ be the Euler’s phi function, i.e., p(n) = |U(n)|. Since ¢(3) = 2 and
©(5) = 4, the following holds

G(3) ® G(5) Max Cyclic Order 3 | Order 5 | Order 15
Loy D Zs Zgrs 2 4 8
Zor® Zs ® Zs Zs® Z1gs P 24 48
ZygD ZLzD Ly Zs D Zos 8 4 32
ZQEBZ:J,@Z5@Z5 Z15@Z45 8 24 192
L3 B ZsD ZsD Zos LsD LD Zrs 26 4 104
ZsDLsDLsDLs DL | LD L5 D Zs 26 24 624

Explain that every Abelian group of order 675 has at least 8 elements of order 15.

Soln. Since G is Abelian, for each divisor m of its order, there is a subgroup of
order m. Since the only Abelian group of order 15 is cyclic, there is an element of
order 15. Since ¢(15) = ¢(3)p(5) = 2 -4 = 8, there are 8 elements of order 8 in a
cyclic group of order 15. Therefore, there are at least 8 elements of order 15. See
the above table. n

If an Abelian group of order 675 has at most 8 elements of order 15, then it is cyclic.
Soln. If it is not cyclic, then there are at least two subgroups of order 3 or there
are at least two subgroups of order 5. Hence there are more than one subgroup of
order 15. Since each subgroup of order 15 contains at least 8 elements of order §,
there are more than 8 elements of order 15 in this case. Therefore the assertion
holds. See the above table. [ ]

Let G = Zyg & Z75. Find the number of subgroups of G of order 15.

Soln. Since Zog® Z75 ~ Zo® Z+® Z o5 contains 32— 1 = 8 elements of order 3 and
5! — 1 = 4 elements of order 5. Therefore it contains 32 elements of order 15. Each
subgroup of order 15 contains ¢(15) = 8 elements of order 15, and each element
of order 15 is contained in exactly one subgroup of order 15, there are 32/8 = 4
subgroups of order 15. [



4. Let G = (a) be a cyclic group of finite order n. Show the following. (20 pts)

(a) 0:Z — G (i — a'). Then o is an onto homomorphism and Z/nZ =~ G, where nZ
is the set of integers divisible by n.
Soln. Since G = {(a) = {a’ | i € Z}, o is onto. o(i + j) = a7 = a'a’ = o(i)o(j),
o is a group homomorphism. Kero = nZ because by (B)

meKerc & am"=esn|mesmenZ.

Thus by (F), Z/nZ ~ G. u

(b) Let H be a subgroup of G of order m, and n = mh. Then H = {(a"). Since G is
cyclic, there is only one subgroup of order m. Hence H = (a”).

Soln. By (B), |a"| = m. Hence (a") is a subgroup of order m. |
(c) {a') = G if and only if ged(i,n) = 1.

Soln. Clearly (a’) C G. If ged(i,n) = 1, there are s,t € Z such that is + nt = 1.

Hence a = a' = a*™ = (a')*(a")! = (a*)* € (a'). Therefore (a) C (a') and

(a’) = G. If (') = G, a = (a')*® for some s € Z. Then by (B), n | is — 1. Therefore,

there is t € Z such that is — 1 = nt, and is — nt = 1. Let d = ged(i,n). Since d | i

and d | n, d | is — nt = 1. Therefore, d = 1. |

(d) For z € U(n), let 0, : G — G (a' +— a*). Then o, € Aut(G), and ¢ : U(n) —
Aut(G) (z — 0,) is a group isomorphism.

5. Suppose p and ¢ are prime numbers with p > ¢, and G is a group of order pq. Let
P € Syl (G) and @ € Syl (G). Show the following. (20 pts)

(a) P is a normal subgroup of G.
Soln. By (G), |Syl,(G)| = |G : N(P)| = 1(mod p). By (C), |G : N(P)| is a divisor
of pg and 1 modulo p. Hence it is either 1 or ¢q. Since ¢ < p, ptq¢—1and ¢ £ 1
(mod p). Therefore |G : N(P)| =1and G = N(P) = {z € G| zPz~' = P}. Hence
P<adG. n

(b) If @ is a normal subgroup, then G is cyclic.
Soln. By 1(d) with H =P, a=eand K =Q, |PQ|=|P: PNQ||Q| = |P||Q| =
pq as |[PNQ|||P] and |Q| by (C) implies |[PN Q| = 1. Since |G| = pq and PQ C G,
G = PQ. Since G = PQ, P< G, Q <G, PNQ = {e}, G =P x Q. Since both P
and () are of prime order, they are cyclic. Thus G = P x Q ~ Z,® Z, =~ Z,q, by
(E). Hence G is cyclic. n

(c) If @ is not a normal subgroup, then p = 1 (mod ¢) and U(p) has a subgroup of order
q.
Soln. If @ is not normal, 1 < |G : N(Q)| = 1 (mod ¢). By (C), |G : N(Q)]
is a divisor of pg. Hence |G : N(Q)| = p and ¢ | p — 1. Since p is a prime,
|U(p)| = ¢(p) =p—1 and U(p) has a subgroup of order g by (E). |

(d) Let p = 11 and ¢ = 5. Find an element r € U(11) of order 5. Let N = (a) be a
cyclic group of order 11 and H = {1,r,72,r3 r*}. Set G = N x H. Then G is a
non-Abelian group of order 55 with respect to the following binary operation:

G x G — G ((a" ) (@, %) — (a"7 77H%)), where 0 < h,j <10, 0 < i,k < 4.



Soln. |U(11)| = 10. 22,25 # 1 (mod 11), |2| = 10 in U(11). Thus r € {3,4,5,9}
and H = {1,4,5,9,3}. Since

((ah’ ri)(aj, T’k))(CLZ, Tm) — (CLthrij, ri+k)<a£7 Tm) — (ah+rij+ri+k£7 Ti+k+m> and

(1) (@, ) 0!, 1)) = (o, ) (@ ) = (@0t i)

the operation is associative. (e, 1) is the identity element and (a", 7)1 = (a=" ™, ).

Let N be a group and H < Aut(N). Then G = N x H becomes a group with respect
to the following binary operation.

GxG—G((x,0) (y,7)— (zo(y),or)).

In 5 (d), we apply 4 (d) and H = (r) < U(p) = Aut(P). Moreover, when y = qj
and o = 1’ o(y) = o(a?) = a"9. Therefore when z = a", zo(y) = a"a"7 = a"*".

This is called a semi-direct product of N and H.



