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ID#: Name:

Quote the following when necessary.

A. Subgroup H of a group G:

H ≤ G ⇔ ∅ 6= H ⊆ G, xy ∈ H and x−1 ∈ H for all x, y ∈ H.

B. Order of an Element: Let g be an element of a group G. Then 〈g〉 = {gn | n ∈ Z} is a
subgroup of G. If there is a positive integer m such that gm = e, where e is the identity
element of G, |g| = min{m | gm = e, m ∈ N} and |g| = |〈g〉|. Moreover, for any integer
n, |g| divides n if and only if gn = e.

C. Lagrange’s Theorem: If H is a subgroup of a finite group G, then |G| = |G : H||H|.

D. Normal Subgroup: A subgroup H of a group G is normal if gHg−1 = H for all g ∈ G.
If H is a normal subgroup of G, then G/H becomes a group with respect to the binary
operation (gH)(g′H) = gg′H.

E. Direct Product: If gcd(m,n) = 1, then Zmn ≈ Zm ⊕ Zn and U(mn) ≈ U(m) ⊕ U(n).

F. Isomorphism Theorem: If α : G → G is a group homomorphism, Ker(α) = {x ∈ G |
α(x) = eG}, where eG is the identity element of G. Then G/Ker(α) ≈ α(G).

G. Sylow’s Theorem: For a finite group G and a prime p, let Sylp(G) denote the set of Sylow
p-subgroups of G. Then Sylp(G) 6= ∅. Let P ∈ Sylp(G). Then |Sylp(G)| = |G : N(P )| ≡ 1
(mod p), where N(P ) = {x ∈ G | xPx−1 = P}.

Other Theorems: List other theorems you applied in your solutions.

Please write your message: Comments on group theory. Suggestions for improvements of
this course. Write on the back of this sheet is also welcome.
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1. Let H and K be subgroups of a group G. Let a, b ∈ G. Show the following. (20 pts)

(a) aH = bH if and only if a−1b ∈ H.

(b) aKa−1 ≤ G and H ∩ aKa−1 ≤ H.

(c) For x, y ∈ H, xaK = yaK if and only if x−1y ∈ H ∩ aKa−1.

(d) If |H| and |K| are finite, then |HaK| = |H : H ∩ aKa−1||K|.
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2. Let φ : G → H be an onto group homomorphism, eG is the identity element of G and eH

the identity element of H. Show the following. (20 pts)

(a) φ(eG) = eH and for a ∈ G, φ(a−1) = φ(a)−1.

(b) Kerφ = {x ∈ G | φ(x) = eH} is a normal subgroup of G.

(c) The homomorphism φ is an isomorphism if and only if Kerφ = {eG}.

(d) If G is Abelian, then H is Abelian.
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3. Answer the following questions on Abelian groups of order 675 = 33 · 52. (20 pts)

(a) Using the Fundamental Theorem of Finite Abelian Groups, list all non-isomorphic
Abelian groups of order 675.

(b) Explain that every Abelian group of order 675 has at least 8 elements of order 15.

(c) If an Abelian group of order 675 has at most 8 elements of order 15, then it is cyclic.

(d) Let G = Z9 ⊕ Z75. Find the number of subgroups of G of order 15.
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4. Let G = 〈a〉 be a cyclic group of finite order n. Show the following. (20 pts)

(a) σ : Z → G (i 7→ ai). Then σ is an onto homomorphism and Z/nZ ≈ G, where nZ
is the set of integers divisible by n.

(b) Let H be a subgroup of G of order m, and n = mh. Then H = 〈ah〉.

(c) 〈ai〉 = G if and only if gcd(i, n) = 1.

(d) For x ∈ U(n), let σx : G → G (ai 7→ axi). Then σx ∈ Aut(G), and φ : U(n) →
Aut(G) (x 7→ σx) is a group isomorphism.
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5. Suppose p and q are prime numbers with p > q, and G is a group of order pq. Let
P ∈ Sylp(G) and Q ∈ Sylq(G). Show the following. (20 pts)

(a) P is a normal subgroup of G.

(b) If Q is a normal subgroup, then G is cyclic.

(c) If Q is not a normal subgroup, then p ≡ 1(mod q) and U(p) has a subgroup of order
q.

(d) Let p = 11 and q = 5. Find an element r ∈ U(11) of order 5. Let N = 〈a〉 be a
cyclic group of order 11 and H = {1, r, r2, r3, r4}. Set G = N × H. Then G is a
non-Abelian group of order 55 with respect to the following binary operation:

G × G → G ((ah, ri)(aj, rk) 7→ (ah+rij, ri+k)), where 0 ≤ h, j ≤ 10, 0 ≤ i, k ≤ 4.
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1. Let H be a subgroup of a group G. Let a, b ∈ G. Show the following. (20 pts)

(a) aH = bH if and only if a−1b ∈ H.

Soln. Since H ≤ G, H 6= ∅. Let a ∈ H. Then a−1 ∈ H and e = aa−1 ∈ H.

Suppose aH = bH. Since e ∈ H, aH = bH implies that b = be ∈ bH = aH. Hence
there exists h ∈ H such that b = ah. Therefore by multiplying a−1 to both hand
sides from the left, a−1b = h ∈ H.

Conversely let a−1b = h ∈ H. Then b = ah and

bH = ahH ⊆ aH = aeH = ahh−1H = aa−1bh−1H ⊆ bH.

Therefore aH = bH.

(b) aKa−1 ≤ G and H ∩ aKa−1 ≤ H.

Soln. Clearly, e = aea−1 ∈ aKa−1 and aKa−1 6= ∅. Let k, k′ ∈ K. Since K ≤ G,
kk′ ∈ K and k−1 ∈ K by (A). Hence (aka−1)(ak′a−1) = akk′a−1 ∈ aKa−1 and
(aka−1)−1 = ak−1a−1 ∈ aKa−1. Thus by (A), aKa−1 ≤ G. Clearly e ∈ H ∩
aKa−1 ⊆ H. Since both H and aKa−1 are subgroups of G, x, y ∈ H ∩ aKa−1

implies xy ∈ H ∩ aKa−1 and x−1 ∈ H ∩ aKa−1. Thus H ∩ aKa−1 ≤ H.

(c) For x, y ∈ H, xaK = yaK if and only if x−1y ∈ H ∩ aKa−1 by (A).

Soln. Since aKa−1 ≤ G and xaK = yaK ⇔ x(aKa−1) = y(aKa−1), we can apply
(a) to have the following; for x, y ∈ H

xaK = yaK ⇔ x(aKa−1) = y(aKa−1) ⇔ x−1y ∈ aKa−1.

Since x, y ∈ H, this is equivalent to the condition x−1y ∈ H ∩ aKa−1.

(d) If |H| and |K| are finite, then |HaK| = |H : H ∩ aKa−1||K|.
Soln. Since HaK is a union of left cosets haK with h ∈ H. Since |haK| = |K|
and there are |H : H∩aKa−1| many distinct left cosets of this type by (c), |HaK| =
|H : H ∩ aKa−1||K|.

2. Let φ : G → H be an onto group homomorphism, eG is the identity element of G and eH

the identity element of H. Show the following. (20 pts)

(a) φ(eG) = eH and for a ∈ G, φ(a−1) = φ(a)−1.

Soln. φ(eG) = φ(eG)−1φ(eG)φ(eG) = φ(eG)−1φ(eGeG) = φ(eG)−1φ(eG) = eH .
φ(a−1) = φ(a−1)φ(a)φ(a)−1 = φ(a−1a)φ(a)−1 = φ(eG)φ(a)−1 = eHφ(a)−1 = φ(a)−1.

(b) Kerφ = {x ∈ G | φ(x) = eH} is a normal subgroup of G.

Soln. Let a, b ∈ Kerφ. Then φ(ab) = φ(a)φ(b) = eHeH = eH . Hence ab ∈ Kerφ.
By (a) φ(a−1) = φ(a)−1 = e−1

H = eH . Hence a−1 ∈ Kerφ. Thus Kerφ is a subgroup
of G. Let g ∈ G, then φ(gag−1) = φ(g)φ(a)φ(g−1) = φ(g)eHφ(g)−1 = eH . Hence
gKerφg−1 ⊆ Kerφ for all g ∈ G. Since this holds for g−1 ∈ G, g−1Kerφg ⊆ Kerφ,
which implies Kerφ ⊆ gKerφg−1. Thus gKerφg−1 = Kerφ for all g ∈ G and Kerφ is
a normal subgroup of G.
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(c) The homomorphism φ is an isomorphism if and only if Kerφ = {eG}.
Soln. Since φ is onto, it suffices to show that φ is one-to-one. Oberve that

φ(x) = φ(y) ⇔ φ(x)−1φ(y) = φ(x−1y) = eH ⇔ x−1y ∈ Kerφ.

Hence if Kerφ = {eG}, φ(x) = φ(y) implies x = y, and φ is one-to-one. Suppose
it is one-to-one. Let x = e. Then y ∈ Kerφ implies φ(y) = φ(eG). Hence if φ is
one-to-one, y = e and Kerφ = {eG} by (a).

(d) If G is Abelian, then H is Abelian.

Soln. Let h, k ∈ H. Since φ is onto, there are a, b ∈ G such that h = φ(a) and
k = φ(b). Now

hk = φ(a)φ(b) = φ(ab) = φ(ba) = φ(b)φ(a) = kh.

Therefore, H is Abelian.

3. Answer the following questions on Abelian groups of order 675 = 33 · 52. (20 pts)

(a) Using the Fundamental Theorem of Finite Abelian Groups, list all non-isomorphic
Abelian groups of order 675.

Soln. Let ϕ be the Euler’s phi function, i.e., ϕ(n) = |U(n)|. Since ϕ(3) = 2 and
ϕ(5) = 4, the following holds

G(3) ⊕ G(5) Max Cyclic Order 3 Order 5 Order 15
Z27 ⊕ Z25 Z675 2 4 8

Z27 ⊕ Z5 ⊕ Z5 Z5 ⊕ Z135 2 24 48
Z9 ⊕ Z3 ⊕ Z25 Z3 ⊕ Z225 8 4 32

Z9 ⊕ Z3 ⊕ Z5 ⊕ Z5 Z15 ⊕ Z45 8 24 192
Z3 ⊕ Z3 ⊕ Z3 ⊕ Z25 Z3 ⊕ Z3 ⊕ Z75 26 4 104

Z3 ⊕ Z3 ⊕ Z3 ⊕ Z5 ⊕ Z5 Z3 ⊕ Z15 ⊕ Z15 26 24 624

(b) Explain that every Abelian group of order 675 has at least 8 elements of order 15.

Soln. Since G is Abelian, for each divisor m of its order, there is a subgroup of
order m. Since the only Abelian group of order 15 is cyclic, there is an element of
order 15. Since ϕ(15) = ϕ(3)ϕ(5) = 2 · 4 = 8, there are 8 elements of order 8 in a
cyclic group of order 15. Therefore, there are at least 8 elements of order 15. See
the above table.

(c) If an Abelian group of order 675 has at most 8 elements of order 15, then it is cyclic.

Soln. If it is not cyclic, then there are at least two subgroups of order 3 or there
are at least two subgroups of order 5. Hence there are more than one subgroup of
order 15. Since each subgroup of order 15 contains at least 8 elements of order 8,
there are more than 8 elements of order 15 in this case. Therefore the assertion
holds. See the above table.

(d) Let G = Z9 ⊕ Z75. Find the number of subgroups of G of order 15.

Soln. Since Z9⊕Z75 ≈ Z9⊕Z3⊕Z25 contains 32−1 = 8 elements of order 3 and
51 − 1 = 4 elements of order 5. Therefore it contains 32 elements of order 15. Each
subgroup of order 15 contains ϕ(15) = 8 elements of order 15, and each element
of order 15 is contained in exactly one subgroup of order 15, there are 32/8 = 4
subgroups of order 15.
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4. Let G = 〈a〉 be a cyclic group of finite order n. Show the following. (20 pts)

(a) σ : Z → G (i 7→ ai). Then σ is an onto homomorphism and Z/nZ ≈ G, where nZ
is the set of integers divisible by n.

Soln. Since G = 〈a〉 = {ai | i ∈ Z}, σ is onto. σ(i + j) = ai+j = aiaj = σ(i)σ(j),
σ is a group homomorphism. Kerσ = nZ because by (B)

m ∈ Kerσ ⇔ am = e ⇔ n | m ⇔ m ∈ nZ.

Thus by (F), Z/nZ ≈ G.

(b) Let H be a subgroup of G of order m, and n = mh. Then H = 〈ah〉. Since G is
cyclic, there is only one subgroup of order m. Hence H = 〈ah〉.
Soln. By (B), |ah| = m. Hence 〈ah〉 is a subgroup of order m.

(c) 〈ai〉 = G if and only if gcd(i, n) = 1.

Soln. Clearly 〈ai〉 ⊆ G. If gcd(i, n) = 1, there are s, t ∈ Z such that is + nt = 1.
Hence a = a1 = ais+nt = (ai)s(an)t = (ai)s ∈ 〈ai〉. Therefore 〈a〉 ⊆ 〈ai〉 and
〈ai〉 = G. If 〈ai〉 = G, a = (ai)s for some s ∈ Z. Then by (B), n | is− 1. Therefore,
there is t ∈ Z such that is − 1 = nt, and is − nt = 1. Let d = gcd(i, n). Since d | i
and d | n, d | is − nt = 1. Therefore, d = 1.

(d) For x ∈ U(n), let σx : G → G (ai 7→ axi). Then σx ∈ Aut(G), and φ : U(n) →
Aut(G) (x 7→ σx) is a group isomorphism.

5. Suppose p and q are prime numbers with p > q, and G is a group of order pq. Let
P ∈ Sylp(G) and Q ∈ Sylq(G). Show the following. (20 pts)

(a) P is a normal subgroup of G.

Soln. By (G), |Sylp(G)| = |G : N(P )| ≡ 1(mod p). By (C), |G : N(P )| is a divisor
of pq and 1 modulo p. Hence it is either 1 or q. Since q < p, p - q − 1 and q 6≡ 1
(mod p). Therefore |G : N(P )| = 1 and G = N(P ) = {x ∈ G | xPx−1 = P}. Hence
P � G.

(b) If Q is a normal subgroup, then G is cyclic.

Soln. By 1(d) with H = P , a = e and K = Q, |PQ| = |P : P ∩ Q||Q| = |P ||Q| =
pq as |P ∩Q| | |P | and |Q| by (C) implies |P ∩Q| = 1. Since |G| = pq and PQ ⊆ G,
G = PQ. Since G = PQ, P � G, Q � G, P ∩ Q = {e}, G = P × Q. Since both P
and Q are of prime order, they are cyclic. Thus G = P × Q ≈ Zp ⊕ Zq ≈ Zpq, by
(E). Hence G is cyclic.

(c) If Q is not a normal subgroup, then p ≡ 1 (mod q) and U(p) has a subgroup of order
q.

Soln. If Q is not normal, 1 < |G : N(Q)| ≡ 1 (mod q). By (C), |G : N(Q)|
is a divisor of pq. Hence |G : N(Q)| = p and q | p − 1. Since p is a prime,
|U(p)| = ϕ(p) = p − 1 and U(p) has a subgroup of order q by (E).

(d) Let p = 11 and q = 5. Find an element r ∈ U(11) of order 5. Let N = 〈a〉 be a
cyclic group of order 11 and H = {1, r, r2, r3, r4}. Set G = N × H. Then G is a
non-Abelian group of order 55 with respect to the following binary operation:

G × G → G ((ah, ri)(aj, rk) 7→ (ah+rij, ri+k)), where 0 ≤ h, j ≤ 10, 0 ≤ i, k ≤ 4.
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Soln. |U(11)| = 10. 22, 25 6≡ 1 (mod 11), |2| = 10 in U(11). Thus r ∈ {3, 4, 5, 9}
and H = {1, 4, 5, 9, 3}. Since

((ah, ri)(aj, rk))(a`, rm) = (ah+rij, ri+k)(a`, rm) = (ah+rij+ri+k`, ri+k+m) and

(ah, ri)((aj, rk)(a`, rm)) = (ah, ri)(aj+rk`, rk+m) = (ah+ri(j+rk`), ri+k+m),

the operation is associative. (e, 1) is the identity element and (ah, ri)−1 = (a−r−ih, r−i).

Let N be a group and H ≤ Aut(N). Then G = N×H becomes a group with respect
to the following binary operation.

G × G → G ((x, σ) · (y, τ) 7→ (xσ(y), στ)).

In 5 (d), we apply 4 (d) and H = 〈r〉 ≤ U(p) = Aut(P ). Moreover, when y = aj

and σ = ri, σ(y) = σ(aj) = arij. Therefore when x = ah, xσ(y) = aharij = ah+rij.
This is called a semi-direct product of N and H.


