November 15, 2013

Algebra II Final 2013

If R is a commutative ring with unity 1, then U(R) denotes the set of units, i.e., invertible
elements. In an integral domain D, a non-zero non-unit element o € D is irreducible if a = B~
with 8,7 € D implies 8 € U(D) or v € U(D). For ay,aq,...,a, € R, (a1,as,...,a,) denotes
the smallest ideal of R containing aq, aso, ..., a,. Then

(a1,a2,...,an) = {ria1 +roazs +--- +rpan | r1,re,..., 7 € R}
When you quote a theorem, state it clearly. You may quote the following facts, if necessary.
I. If R is an integral domain, then
(a) the polynomial ring R[x] over R is an integral domain;
(b) the unit group U(R[z]) = U(R).
II. Let F be a field and F[z] the polynomial ring over F.

(a) F[z]is a principal ideal domain.

1

(b) Let I be a nonzero ideal in F[x]. Let h(x) is a monic' nonzero polynomial in I of

smallest degree. Then I = (h(z)).
Problems
1. Let 22 — 2,22 4+ 2 be polynomials in Q[z]. Show the following. (15pts)
(a) Q[z] = (#® — 2,22 +2) and (22 —2) N (z% +2) = (x* — 4).
(b) Let
¢ Qlz] — Qla)/(2® = 2) & Q[z]/(z* +2) (f(x) = (f(x)+ (2 =2), f(x) + (2 +2))).

Then ¢ is an onto ring homomorphism and Kerp = (2% — 4).

(c) Both Q[z]/(x? — 2) and Q[z]/(x? + 2) are fields, but Q[z]/(z* — 4) is not a field.

Lthe leading coefficient is 1



2. Prove the following. (25pts)

(a) Find a commutative ring R with unity 1 such that the polynomial ring R[z] does not
satisfy U(R[z]) = U(R).

(b

) Z[x,y] is an integral domain, and U(Z|z,y]) = {—1,1}.
(c) Let f(z,y),9(z,y) € Z[z,y]. If (f(z,y)) = (9(z,y)), then f(z,y) = £g(z,y).
(d) (=,

)

d
(e

y) is not a maximal ideal.

Z|x,y] is not a principal ideal domain.

3. Let R = {a+by/—13 | a,b € Z} C C, and let N(a + by/—13) = a? + 13b%. Show the
following. (30pts)

(a) R is an integral domain and R = {f(v/—13) | f(t) € Z[t]}.
(b) U(R) ={-1,1}, and o € R is a unit if and only if N(«a) =

)
)

(c) Four elements 2,7,1 —y/—13 and 1 + y/—13 of R are irreducible elements of R.
)

(d) R is not a unique factorization domain.

4. Let E be an extension field of F. Let p(x) be an irreducible polynomial of degree n in
F[z], and « a zero of p(x) in E. Let ¢ : Flx] — E (f(z) — f(a)). Show the following.
(30pts)

(a) Keryp = (p(x)), and Imip = F(«) is the smallest subfield of F containing F' and a.

(b) [F(«) : F], the dimension of F(«) as a vector space over F, is equal to n, the degree
of p(x).

(¢) Every element (§ € F(«) is algebraic over F, i.e.. 3 is a zero of a nonzero polynomial
q(x) € Flz].

(d) Suppose v € E is algebraic over F(«). Then ~ is algebraic over F.
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1. Let 22 — 2,22 4 2 be polynomials in Q[z]. Show the following. (15pts)

(a)

Qlr] = (2? — 2,22 +2) and (22 — 2) N (2?2 +2) = (z* — 4).

Solution. Since 1 = 1(z%2+2) — 1(22 —2) € (22 — 2,2? + 2), for any f(z) € Q[x],
f(x) = f(z)-1€ (z?—2,2%2 +2). Thus Q[z] = (2% — 2,22 + 2).

Since 2t — 4 = (22 — 2)(2%2 + 2), (22 - 2) N (2% +2) D (x* — 4).

Let h(z) € (x? —2) N (22 +2). Then h(x) = f(z)(2® — 2) = g(x)(2? + 2) for some
f(x),9(x) € Q[z]. Now

o~

ha) = hz) 1= %h(m)(aﬁ +2)— 311(1‘)(1:2 _9)

Let

v Qlz] — Qla]/(2* —2) ® Q[2]/(a”® +2) (f(2) = (f() + (2? = 2), f(x) + (2” +2))).

Then ¢ is an onto ring homomorphism and Kerp = (z4 — 4).

Solution. ¢ is clearly a ring homomorphism. Since Kerg = (2% —2) N (22 + 2) =
(z* — 4), it suffices to show ¢ is onto. Let f(z),g(x) € Q[z]. Then

P (@)(& +2) = Jo(a)(a* ~ 2)

= GI@E +2)+ (o~ 2), ~ 1e(a)a* ~ 2) + (2 +2)
= (14 3~ 2)f() + (2~ 2), (1 = 3+ 2))g(a) + (2 +2)

= (f(z)+ (2> — 2),9(z) + (2* + 2)).

Therefore ¢ is an onto ring homomorphism. [ |

Both Q[z]/(z? — 2) and Q[x]/(x? + 2) are fields, but Q[x]/(z* — 4) is not a field.

Solution. 22 — 2 and 22 4 2 are irreducible over Q as £v/2,+v/~2 ¢ Q. (One can
also apply the Eisenstein’s criterion and the Gauss’ lemma.) Since Q[x] is a principal
ideal domain, every irreducible polynomial generates a maximal ideal. Hence both
Qlz)/(z? — 2) and Q[z]/(z* + 2) are fields. Since (z* — 4) is properly contained in
(x? —2), (z* — 4) is not a maximal ideal. Hence Q[z]/(z* — 4) is not a field. ]

2. Prove the following. (25pts)

(a)

Find a commutative ring R with unity 1 such that the polynomial ring R[z] does not
satisfy U(R[z]) = U(R).

Solution. Let R = Z4. Since (2x 4+ 1)(—2x + 1) = 1, 22 + 1 € U(Z4[z]). Clealy
20+ 1€ U(Zy). [



(b)

Z[z,y] is an integral domain, and U(Z[z,y]) = {—1,1}.
Solution. Since Z is an integral domain, Z[z] is an integral domain by I (a). Thus
again by the same result, Z[x,y] = (Z[z])[y] is an integral domain. Now by I (b),

U(Zlz,yl) = U((Z[])ly]) = U(Zz]) =U(Z) = {1, -1}. u

Let f(x,y),9(z,y) € Z[z,y]. If (f(z,y)) = (9(x,y)), then f(z,y) = £g(z,y).

Solution. If f(x,y) or g(x,y) is zero, both are zero and the assertion is clear. Since
f(z,y) € (g(x,y)), there exists h(z,y) € Z[z,y] such that f(z,y) = h(z,y)g(x,y).
Similarly, since g(z,y) € (f(x,y)), there exists k(z,y) € Z[x,y] such that g(x,y) =
kE(x,y)f(z,y). Then

f(@,y) = h(z,y)g(z,y) = h(z,y)k(z,y) f(z,y).
So f(z,y)(1 — h(z,y)k(z,y)) = 0. Since f(x,y) # 0, h(z,y)k(z,y) =1 and h(z,y) €
U(Z[z,y]) = {1,—1}. Therefore f(x,y) = £g(x,y). ]

(x,y) is not a maximal ideal.

Solution. Let 7 : Z[z,y] — Z (f(z,y) — f(0,0)). Then = is onto. Moreover,
Kerm D (z,y) and Kermr N Z = {0}. Hence Kerm = (z,y). Therefore Z[z,y|/(x,y) ~

Z. Since Z is not a field, (z,y) is not a maximal ideal. ]
Z[x,y] is not a principal ideal domain.

Solution. Suppose (z,y) = (h(z,y)). Since z = h(z,y)f(z,y) and y = h(x,y)g(z,y)
for some f(z,y),9(z,y) € Z|x,y], h(x,y) = h € Z by considering the degree of
h(z,y) in  and y. This is a contradition as (x,y) # Z[z,y]. Note that (z,y) =
{f(@,y)x +g(x, )y | f(z,9),9(2,y) € Z[z,y]}. .

3. Let R={a+by/—13 | a,b € Z} C C, and let N(a + b\/—13) = a? + 13b*>. Show the
following. (30pts)

(a)

R is an integral domain and R = {f(v/—13) | f(¢t) € Z]t]}.

Solution. Let ¢ : Z[t] — C (f(t) — f(v/—13)). Then clearly ¢ is a nonzero ring
homomorphism and ¢(1) = 1. So Im¢ = {f(v/—13) | f(t) € Z[t]} is a subring of C.
Since C' is a field, there is no zero-divisor and Im¢ is an integral domain. Thus it
remains to show that Im¢ = R. Since a + by/—13 = ¢(a + bt), Im¢ D R. Let f(t) €
Z[t]. Then there exist ¢(t) € Z[t] and a,b € Z such that f(t) = q(t)(z>+13)+a+bt as
22 +13 is a monic polynomial of degree 2. Now ¢(f(t)) = f(v—13) = a+by/—13 € R.
|

U(R) ={-1,1}, and o € R is a unit if and only if N(«a) =

Solution. Since N(a) = a - @, N(af) = afaf = aaff = N(a)N(3). Suppose
af =1. Then 1 = N(1) = N(a)N(3). Since N(«), N() are nonnegative integers
by definition, N(a) = 1. Conversely if N(a) = 1, then @ = a~!. Let a = a + by/—13
with a,b € Z. If N(a) = 1, then a? + 13b? = 1. The only possibilities are o = +1.
Since 1, —1 are units, this prove assertions. [ ]
Four elements 2,7,1 —y/—13 and 1+ +/—13 of R are irreducible elements of R.
Solution. Let oo € {2,7,1 —/—13,1+4 +/—13}. Then N(a) € {4,49,14}. Since 2,7
cannot be expressed as a® + 13b? for some a,b € Z, « is irreducible. Note that if

a = By with N(8) # 1, N(7) # 1, then N(a) = N(B)N(y) and N(8), N(7) € {2,7}.
| ]



(d)

R is not a unique factorization domain.

Solution. By the previous problem, 2,7,1—+/—13 and 1++/—13 of R are irreducible
elements of R. Since

2.7=14=(1—=13)(1 +V—13),

the decomposition is not unique. Note that it is easy to see that 2 is not an associate
of 1 ++/—13 as the value of N is not equal. [ |

4. Let E be an extension field of F. Let p(x) be an irreducible polynomial of degree n in
F[z], and « a zero of p(x) in E. Let ¢ : Flx] — E (f(z) — f(«)). Show the following.
(30pts)

(a)

Kery) = (p(z)), and Im1) = F(«) is the smallest subfield of E containing F' and «.

Solution. Since p(a) = 0, (p(z)) C Kertp. Since F[z] is a principal ideal domain
and p(z) an irreducible element, (p(z)) is a maximal ideal. Since (1) = 1, ¥ is
not a zero mapping, Kery) # Fx]. Hence Keryp = (p(x)). Thus by an isomorphism
theorem, F[x]/Kery ~ Imy) C F(a) and Im) is a field containing F and a.. Therefore,
Imy = F(a). ]

[F'(«) : F], the dimension of F'(«) as a vector space over F', is equal to n, the degree
of p(x).

Solution. Let f(z) € Flx]. Then there exist ¢(x),r(x) € Flz] such that f(z) =
q(z)p(z) +r(z) with r(z) = 0 or degr(x) < n. Since f(a) = ¢(a)p(a) +r(a) = r(a).
F(a) = {ap+ara+---+a,_1a" 1 | ag,a1,...,a,-1 € F}. Now it suffices to show that
1,a,02,...,a" ! are linearly independent. Suppose ag+aja+---+a,_10™ 1 = 0 for
some ag, ai, .. .,an—1 € F. Let ¢(z) = ap+ a1z +- - +a,_12"" ! € Flx]. This implies
q(z) =0, as p(x) is of smallest degree among nonzero polynomials in (p(z)) = Ker.
|

Every element (§ € F(«) is algebraic over F, i.e.. 3 is a zero of a nonzero polynomial
q(z) € Flz].

Solution. Since [F(a) : F] = n, the set {1,3,3%,...,3"} is linearly dependent.
Hence there exist cg,c1,...,c, € F not all zero such that ¢(z) = co + c12 + coz® +
<o+ epx™ # 0 satisfies g(3) = 0. [ ]
Suppose v € F is algebraic over F(«). Then ~ is algebraic over F'.

Solution. Let g(x) be the minimal polynomial of 7 over F(a). Then [F(a,7) :
F(a)] = degq(x). Hence

[Flay) : F) = [F(a,7) : F@)][F(a) : F] = degg(x) deg p(x) < oc.

Let m = deg q(x) deg p(z). Then 1,7,~2,...,7™ is linearly dependent over F, and we
can find a nonzero polynomial f(z) € F[x] of degree at most m, such that f(y) =0
by the same argument employed in the previous problem. Hence + is algebraic over
F. ]
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