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Algebra II Final 2013
If R is a commutative ring with unity 1, then U(R) denotes the set of units, i.e., invertible

elements. In an integral domain D, a non-zero non-unit element α ∈ D is irreducible if α = βγ
with β, γ ∈ D implies β ∈ U(D) or γ ∈ U(D). For a1, a2, . . . , an ∈ R, 〈a1, a2, . . . , an〉 denotes
the smallest ideal of R containing a1, a2, . . . , an. Then

〈a1, a2, . . . , an〉 = {r1a1 + r2a2 + · · · + rnan | r1, r2, . . . , rn ∈ R}.

When you quote a theorem, state it clearly. You may quote the following facts, if necessary.

I. If R is an integral domain, then

(a) the polynomial ring R[x] over R is an integral domain;

(b) the unit group U(R[x]) = U(R).

II. Let F be a field and F [x] the polynomial ring over F .

(a) F [x] is a principal ideal domain.

(b) Let I be a nonzero ideal in F [x]. Let h(x) is a monic1 nonzero polynomial in I of
smallest degree. Then I = 〈h(x)〉.

Problems

1. Let x2 − 2, x2 + 2 be polynomials in Q[x]. Show the following. (15pts)

(a) Q[x] = 〈x2 − 2, x2 + 2〉 and 〈x2 − 2〉 ∩ 〈x2 + 2〉 = 〈x4 − 4〉.
(b) Let

ϕ : Q[x] → Q[x]/〈x2 −2〉⊕Q[x]/〈x2 +2〉 (f(x) 7→ (f(x)+ 〈x2 −2〉, f(x)+ 〈x2 +2〉)).

Then ϕ is an onto ring homomorphism and Kerϕ = 〈x4 − 4〉.
(c) Both Q[x]/〈x2 − 2〉 and Q[x]/〈x2 + 2〉 are fields, but Q[x]/〈x4 − 4〉 is not a field.

1the leading coefficient is 1



2. Prove the following. (25pts)

(a) Find a commutative ring R with unity 1 such that the polynomial ring R[x] does not
satisfy U(R[x]) = U(R).

(b) Z[x, y] is an integral domain, and U(Z[x, y]) = {−1, 1}.
(c) Let f(x, y), g(x, y) ∈ Z[x, y]. If 〈f(x, y)〉 = 〈g(x, y)〉, then f(x, y) = ±g(x, y).
(d) 〈x, y〉 is not a maximal ideal.

(e) Z[x, y] is not a principal ideal domain.

3. Let R = {a + b
√
−13 | a, b ∈ Z} ⊂ C, and let N(a + b

√
−13) = a2 + 13b2. Show the

following. (30pts)

(a) R is an integral domain and R = {f(
√
−13) | f(t) ∈ Z[t]}.

(b) U(R) = {−1, 1}, and α ∈ R is a unit if and only if N(α) = 1.

(c) Four elements 2, 7, 1 −
√
−13 and 1 +

√
−13 of R are irreducible elements of R.

(d) R is not a unique factorization domain.

4. Let E be an extension field of F . Let p(x) be an irreducible polynomial of degree n in
F [x], and α a zero of p(x) in E. Let ψ : F [x] → E (f(x) 7→ f(α)). Show the following.
(30pts)

(a) Kerψ = 〈p(x)〉, and Imψ = F (α) is the smallest subfield of E containing F and α.

(b) [F (α) : F ], the dimension of F (α) as a vector space over F , is equal to n, the degree
of p(x).

(c) Every element β ∈ F (α) is algebraic over F , i.e.. β is a zero of a nonzero polynomial
q(x) ∈ F [x].

(d) Suppose γ ∈ E is algebraic over F (α). Then γ is algebraic over F .
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Solutions to Algebra II Final 2013

1. Let x2 − 2, x2 + 2 be polynomials in Q[x]. Show the following. (15pts)

(a) Q[x] = 〈x2 − 2, x2 + 2〉 and 〈x2 − 2〉 ∩ 〈x2 + 2〉 = 〈x4 − 4〉.
Solution. Since 1 = 1

4(x2 + 2) − 1
4(x2 − 2) ∈ 〈x2 − 2, x2 + 2〉, for any f(x) ∈ Q[x],

f(x) = f(x) · 1 ∈ 〈x2 − 2, x2 + 2〉. Thus Q[x] = 〈x2 − 2, x2 + 2〉.
Since x4 − 4 = (x2 − 2)(x2 + 2), 〈x2 − 2〉 ∩ 〈x2 + 2〉 ⊃ 〈x4 − 4〉.
Let h(x) ∈ 〈x2 − 2〉 ∩ 〈x2 + 2〉. Then h(x) = f(x)(x2 − 2) = g(x)(x2 + 2) for some
f(x), g(x) ∈ Q[x]. Now

h(x) = h(x) · 1 =
1
4
h(x)(x2 + 2) − 1

4
h(x)(x2 − 2)

=
1
4
f(x)(x2 − 2)(x2 + 2) − 1

4
g(x)(x2 + 2)(x2 − 2) ∈ 〈x4 − 4〉.

(b) Let

ϕ : Q[x] → Q[x]/〈x2 − 2〉⊕Q[x]/〈x2 + 2〉 (f(x) 7→ (f(x) + 〈x2 − 2〉, f(x) + 〈x2 + 2〉)).

Then ϕ is an onto ring homomorphism and Kerϕ = 〈x4 − 4〉.
Solution. ϕ is clearly a ring homomorphism. Since Kerϕ = 〈x2 − 2〉 ∩ 〈x2 + 2〉 =
〈x4 − 4〉, it suffices to show ϕ is onto. Let f(x), g(x) ∈ Q[x]. Then

ϕ(
1
4
f(x)(x2 + 2) − 1

4
g(x)(x2 − 2))

= (
1
4
f(x)(x2 + 2) + 〈x2 − 2〉,−1

4
g(x)(x2 − 2) + 〈x2 + 2〉)

= ((1 +
1
4
(x2 − 2))f(x) + 〈x2 − 2〉, (1 − 1

4
(x2 + 2))g(x) + 〈x2 + 2〉)

= (f(x) + 〈x2 − 2〉, g(x) + 〈x2 + 2〉).

Therefore ϕ is an onto ring homomorphism.

(c) Both Q[x]/〈x2 − 2〉 and Q[x]/〈x2 + 2〉 are fields, but Q[x]/〈x4 − 4〉 is not a field.
Solution. x2 − 2 and x2 + 2 are irreducible over Q as ±

√
2,±

√
−2 6∈ Q. (One can

also apply the Eisenstein’s criterion and the Gauss’ lemma.) Since Q[x] is a principal
ideal domain, every irreducible polynomial generates a maximal ideal. Hence both
Q[x]/〈x2 − 2〉 and Q[x]/〈x2 + 2〉 are fields. Since 〈x4 − 4〉 is properly contained in
〈x2 − 2〉, 〈x4 − 4〉 is not a maximal ideal. Hence Q[x]/〈x4 − 4〉 is not a field.

2. Prove the following. (25pts)

(a) Find a commutative ring R with unity 1 such that the polynomial ring R[x] does not
satisfy U(R[x]) = U(R).
Solution. Let R = Z4. Since (2x + 1)(−2x + 1) = 1, 2x + 1 ∈ U(Z4[x]). Clealy
2x+ 1 6∈ U(Z4).
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(b) Z[x, y] is an integral domain, and U(Z[x, y]) = {−1, 1}.
Solution. Since Z is an integral domain, Z[x] is an integral domain by I (a). Thus
again by the same result, Z[x, y] = (Z[x])[y] is an integral domain. Now by I (b),
U(Z[x, y]) = U((Z[x])[y]) = U(Z[x]) = U(Z) = {1,−1}.

(c) Let f(x, y), g(x, y) ∈ Z[x, y]. If 〈f(x, y)〉 = 〈g(x, y)〉, then f(x, y) = ±g(x, y).
Solution. If f(x, y) or g(x, y) is zero, both are zero and the assertion is clear. Since
f(x, y) ∈ 〈g(x, y)〉, there exists h(x, y) ∈ Z[x, y] such that f(x, y) = h(x, y)g(x, y).
Similarly, since g(x, y) ∈ 〈f(x, y)〉, there exists k(x, y) ∈ Z[x, y] such that g(x, y) =
k(x, y)f(x, y). Then

f(x, y) = h(x, y)g(x, y) = h(x, y)k(x, y)f(x, y).

So f(x, y)(1 − h(x, y)k(x, y)) = 0. Since f(x, y) 6= 0, h(x, y)k(x, y) = 1 and h(x, y) ∈
U(Z[x, y]) = {1,−1}. Therefore f(x, y) = ±g(x, y).

(d) 〈x, y〉 is not a maximal ideal.
Solution. Let π : Z[x, y] → Z (f(x, y) 7→ f(0, 0)). Then π is onto. Moreover,
Kerπ ⊃ 〈x, y〉 and Kerπ ∩ Z = {0}. Hence Kerπ = 〈x, y〉. Therefore Z[x, y]/〈x, y〉 ≈
Z. Since Z is not a field, 〈x, y〉 is not a maximal ideal.

(e) Z[x, y] is not a principal ideal domain.
Solution. Suppose 〈x, y〉 = 〈h(x, y)〉. Since x = h(x, y)f(x, y) and y = h(x, y)g(x, y)
for some f(x, y), g(x, y) ∈ Z[x, y], h(x, y) = h ∈ Z by considering the degree of
h(x, y) in x and y. This is a contradition as 〈x, y〉 6= Z[x, y]. Note that 〈x, y〉 =
{f(x, y)x+ g(x, y)y | f(x, y), g(x, y) ∈ Z[x, y]}.

3. Let R = {a + b
√
−13 | a, b ∈ Z} ⊂ C, and let N(a + b

√
−13) = a2 + 13b2. Show the

following. (30pts)

(a) R is an integral domain and R = {f(
√
−13) | f(t) ∈ Z[t]}.

Solution. Let φ : Z[t] → C (f(t) 7→ f(
√
−13)). Then clearly φ is a nonzero ring

homomorphism and φ(1) = 1. So Imφ = {f(
√
−13) | f(t) ∈ Z[t]} is a subring of C.

Since C is a field, there is no zero-divisor and Imφ is an integral domain. Thus it
remains to show that Imφ = R. Since a+ b

√
−13 = φ(a+ bt), Imφ ⊃ R. Let f(t) ∈

Z[t]. Then there exist q(t) ∈ Z[t] and a, b ∈ Z such that f(t) = q(t)(x2+13)+a+bt as
x2+13 is a monic polynomial of degree 2. Now φ(f(t)) = f(

√
−13) = a+b

√
−13 ∈ R.

(b) U(R) = {−1, 1}, and α ∈ R is a unit if and only if N(α) = 1.
Solution. Since N(α) = α · α, N(αβ) = αβαβ = ααββ = N(α)N(β). Suppose
αβ = 1. Then 1 = N(1) = N(α)N(β). Since N(α), N(β) are nonnegative integers
by definition, N(α) = 1. Conversely if N(α) = 1, then α = α−1. Let α = a+ b

√
−13

with a, b ∈ Z. If N(α) = 1, then a2 + 13b2 = 1. The only possibilities are α = ±1.
Since 1,−1 are units, this prove assertions.

(c) Four elements 2, 7, 1 −
√
−13 and 1 +

√
−13 of R are irreducible elements of R.

Solution. Let α ∈ {2, 7, 1 −
√
−13, 1 +

√
−13}. Then N(α) ∈ {4, 49, 14}. Since 2, 7

cannot be expressed as a2 + 13b2 for some a, b ∈ Z, α is irreducible. Note that if
α = βγ with N(β) 6= 1, N(γ) 6= 1, then N(α) = N(β)N(γ) and N(β), N(γ) ∈ {2, 7}.
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(d) R is not a unique factorization domain.
Solution. By the previous problem, 2, 7, 1−

√
−13 and 1+

√
−13 of R are irreducible

elements of R. Since

2 · 7 = 14 = (1 −
√
−13)(1 +

√
−13),

the decomposition is not unique. Note that it is easy to see that 2 is not an associate
of 1 ±

√
−13 as the value of N is not equal.

4. Let E be an extension field of F . Let p(x) be an irreducible polynomial of degree n in
F [x], and α a zero of p(x) in E. Let ψ : F [x] → E (f(x) 7→ f(α)). Show the following.
(30pts)

(a) Kerψ = 〈p(x)〉, and Imψ = F (α) is the smallest subfield of E containing F and α.
Solution. Since p(α) = 0, 〈p(x)〉 ⊂ Kerψ. Since F [x] is a principal ideal domain
and p(x) an irreducible element, 〈p(x)〉 is a maximal ideal. Since ψ(1) = 1, ψ is
not a zero mapping, Kerψ 6= F [x]. Hence Kerψ = 〈p(x)〉. Thus by an isomorphism
theorem, F [x]/Kerψ ≈ Imψ ⊂ F (α) and Imψ is a field containing F and α. Therefore,
Imψ = F (α).

(b) [F (α) : F ], the dimension of F (α) as a vector space over F , is equal to n, the degree
of p(x).
Solution. Let f(x) ∈ F [x]. Then there exist q(x), r(x) ∈ F [x] such that f(x) =
q(x)p(x) + r(x) with r(x) = 0 or deg r(x) < n. Since f(α) = q(α)p(α) + r(α) = r(α).
F (α) = {a0+a1α+· · ·+an−1α

n−1 | a0, a1, . . . , an−1 ∈ F}. Now it suffices to show that
1, α, α2, . . . , αn−1 are linearly independent. Suppose a0+a1α+ · · ·+an−1α

n−1 = 0 for
some a0, a1, . . . , an−1 ∈ F . Let q(x) = a0 +a1x+ · · ·+an−1x

n−1 ∈ F [x]. This implies
q(x) = 0, as p(x) is of smallest degree among nonzero polynomials in 〈p(x)〉 = Kerψ.

(c) Every element β ∈ F (α) is algebraic over F , i.e.. β is a zero of a nonzero polynomial
q(x) ∈ F [x].
Solution. Since [F (α) : F ] = n, the set {1, β, β2, . . . , βn} is linearly dependent.
Hence there exist c0, c1, . . . , cn ∈ F not all zero such that q(x) = c0 + c1x + c2x

2 +
· · · + cnx

n 6= 0 satisfies q(β) = 0.

(d) Suppose γ ∈ E is algebraic over F (α). Then γ is algebraic over F .
Solution. Let q(x) be the minimal polynomial of γ over F (α). Then [F (α, γ) :
F (α)] = deg q(x). Hence

[F (α, γ) : F ] = [F (α, γ) : F (α)][F (α) : F ] = deg q(x) deg p(x) <∞.

Let m = deg q(x) deg p(x). Then 1, γ, γ2, . . . , γm is linearly dependent over F , and we
can find a nonzero polynomial f(x) ∈ F [x] of degree at most m, such that f(γ) = 0
by the same argument employed in the previous problem. Hence γ is algebraic over
F .
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