Algebra II Final 2015

If R is a commutative ring with unity 1, then U(R) denotes the set of units, i.e., invertible elements. In an integral domain D, a non-zero non-unit element $\alpha \in D$ is irreducible if $\alpha = \beta \gamma$ with $\beta, \gamma \in D$ implies $\beta \in U(D)$ or $\gamma \in U(D)$. For $a_1, a_2, \ldots, a_n \in R$, $\langle a_1, a_2, \ldots, a_n \rangle$ denotes the smallest ideal of R containing a_1, a_2, \ldots, a_n . Then

$$\langle a_1, a_2, \dots, a_n \rangle = \{ r_1 a_1 + r_2 a_2 + \dots + r_n a_n \mid r_1, r_2, \dots, r_n \in R \}.$$

When you apply a theorem, state it clearly. You may quote the following facts, if necessary.

- I. If R is an integral domain, then
 - (a) the polynomial ring R[x] over R is an integral domain;
 - (b) the unit group U(R[x]) = U(R).
- II. Let F be a field and F[x] the polynomial ring over F.
 - (a) F[x] is a principal ideal domain.
 - (b) Let I be a non-zero ideal in F[x]. Let h(x) is a monic¹ nonzero polynomial in I of smallest degree. Then $I = \langle h(x) \rangle$.

Problems

- 1. Let R be a commutative ring with unity 1. (25pts)
 - (a) Write the condition that R becomes an integral domain, and the definition of prime ideals.
 - (b) Show that R is an integral domain if and only if $\{0\}$ is a prime ideal.
 - (c) Let R be an integral domain. Show that for $a, b \in R$, $\langle a \rangle = \langle b \rangle$ if and only if there is a unit $u \in U(R)$ such that b = ua.
 - (d) Let R be an integral domain and p a non-zero element such that $\langle p \rangle$ is a prime ideal. Show that p is irreducible.
 - (e) Suppose R is a principal ideal domain and P is a non-zero prime ideal. Show that P is a maximal ideal.

¹the leading coefficient is 1

- 2. Let R be a finite commutative ring with unity 1.
 - (25 pts)
 - (a) Show that every non-zero element of R is either a zero divisor or a unit.
 - (b) If R is an integral domain, then it is a field.
 - (c) If R is an integral domain, Then the set $S = \{n \in \mathbb{N} \mid n \cdot 1 = 0\}$ is not empty and $p = \min S$ is a prime number.
 - (d) Suppose $R = \{c_0 + c_1\alpha + c_2\alpha^2 \mid c_0, c_1, c_2 \in \mathbb{Z}_2\}$, a commutative ring containing \mathbb{Z}_2 , and $\alpha^3 + \alpha + 1 = 0$. Write a multiplication table (with respect to multiplication).
 - (e) Let R be as in (d). show that (i) R is a field and that (ii) $\beta^8 = \beta$ for all $\beta \in R$.
- 3. Let R be an integral domain, R[x] and R[x, y] rings of polynomials over R. (25pts)
 - (a) Show that U(R[x, y]) = U(R).
 - (b) Let $f(x, y), g(x, y) \in R[x, y]$. Show that if $\langle f(x, y) \rangle = \langle g(x, y) \rangle$, then there exists $a \in U(R)$ such that $f(x, y) = a \cdot g(x, y)$.
 - (c) Show that R[x, y] is not a principal ideal domain.
 - (d) $A = \{f(x) \in R[x] \mid f(0) = 0\}$ is a prime ideal.
 - (e) A in (d) is a maximal ideal if and only if R is a field.

- 4. Let $a \in C$ be a zero of a nonzero polynomial p(x) in Q[x]. Let $\psi : Q[x] \to C(f(x) \mapsto f(a))$. Show the following. (25pts)
 - (a) $\operatorname{Im}(\psi)$ a subring of \boldsymbol{C} and $\operatorname{Ker}(\psi)$ is an ideal of $\boldsymbol{Q}[x]$.
 - (b) If $\operatorname{Ker}(\psi) = \langle p(x) \rangle$, then p(x) is irreducible over Q and $\operatorname{Im}(\psi)$ is a field.

For (c), (d), (e), suppose $p(x) = x^7 + 7x + 14$, $\gamma \in \mathbf{R}$ is a zero of p(x), and $E = \mathbf{Q}(\gamma)$.

- (c) Show that [E : Q] = 7.
- (d) Let F be a subfield of E containing Q. Then F = Q or F = E.
- (e) E is not the splitting field of p(x) contained in C.

Solutions to Algebra II Final 2015

1. Let R be a commutative ring with unity 1.

that P is a maximal ideal.

(a) Write the condition that R becomes an integral domain, and the definition of prime ideals.

Solution. R is an integral domain if R does not have a zero divisor, i.e., if ab = 0 implies a = 0 or b = 0 for $a, b \in R$. A nonempty subset A of R is a prime ideal if (i) A is a proper ideal, i.e., $A \neq R$ and for all $a, b \in A$ and $r \in R$, $a - b \in A$ and $ra \in A$, and if (ii) for $a, b \in R$, $ab \in A$ implies $a \in A$ or $b \in A$.

(b) Show that R is an integral domain if and only if $\{0\}$ is a prime ideal. Solution. First note that $0 \neq 1 \in R$, $\{0\}$ is a proper ideal. Suppose R is an integral domain and $ab \in \{0\}$ for $a, b \in R$. Then ab = 0 and a = 0 or b = 0.

Thus $a \in \{0\}$ or $b \in \{0\}$ and $\{0\}$ is a prime ideal. Next assume that $\{0\}$ is a prime ideal. If ab = 0 for some $a, b \in R$. Then $ab \in \{0\}$. Since $\{0\}$ is a prime ideal, $a \in \{0\}$ or $b \in \{0\}$, i.e., a = 0 or b = 0.

- (c) Let R be an integral domain. Show that for $a, b \in R$, $\langle a \rangle = \langle b \rangle$ if and only if there is a unit $u \in U(R)$ such that b = ua. **Solution.** Suppose b = ua for some unit u. Then $a = u^{-1}b$. Hence $b = ua \in \langle a \rangle$ and $\langle b \rangle \subseteq \langle a \rangle$. Moreover, $a = u^{-1}b \in \langle b \rangle$ and $\langle a \rangle \subseteq \langle b \rangle$. Hence $\langle a \rangle = \langle b \rangle$. Conversely assume that $\langle a \rangle = \langle b \rangle$. Since $b \in \langle b \rangle = \langle a \rangle$, b = ua for some $u \in R$. Similarly, $a \in \langle a \rangle = \langle b \rangle$, a = vb for some $v \in R$. In particular, if b = 0, then a = 0, in which case b = 0 = 1a and the assertion holds. Assume $b \neq 0$. Since
- (d) Let R be an integral domain and p a non-zero element such that ⟨p⟩ is a prime ideal. Show that p is irreducible.
 Solution. Since p ≠ 0 and ⟨p⟩ ≠ ⟨1⟩, by (b), p is not a unit of R. Suppose p = ab. Then ab ∈ ⟨p⟩ and ⟨p⟩ is a prime ideal, a ∈ ⟨p⟩ or b ∈ ⟨p⟩. By symmetry we may assume that a ∈ ⟨p⟩. Then a = pq = abq for some q ∈ R.

b = ua = uvb, (1 - uv)b = 0. 1 = uv and $u \in U(R)$. Hence the assertion holds.

- Since a(1 bq) = 0 and $a \neq 0$, bq = 1 and b is a unit. Thus p is irreducible. (e) Suppose R is a principal ideal domain and P is a non-zero prime ideal. Show
 - **Solution.** Since R is a principal ideal domain, there exists $P = \langle p \rangle$. Since $P \neq \{0\}, p \neq 0$. Since P is a prime ideal, p is irreducible by (d). Suppose $P \subseteq Q \subset R$, i.e., Q is a proper ideal containing P. Since R is a principal ideal domain, $Q = \langle q \rangle$ for some non-zero non-unit element $q \in Q$. Since $p \in \langle p \rangle = P \subseteq Q = \langle q \rangle$. Thus there exists $r \in R$ such that p = rq. Since p is irreducible and q is a non-unit element, r is a unit and by (c), $P = \langle p \rangle = \langle q \rangle = Q$ and P is a maximal ideal.

(25 pts)

2. Let R be a finite commutative ring with unity 1.

(25 pts)

(a) Show that every non-zero element of R is either a zero divisor or a unit.

Solution. Let a be a non-zero element of R. Assume that a is not a zerodivisor. Let $\phi : R \to R \ (x \mapsto ax)$. Then ax = ay implies a(x - y) = 0 and we have x = y. Therefore, ϕ is one-to-one. Since R is a finite ring, ϕ is a bijection, and there exist $b \in R$ such that $1 = \phi(b) = ab$. Therefore, a is a unit.

- (b) If R is an integral domain, then it is a field.Solution. Let a be a non-zero element of R. Since R is an integral domain, a is not a zero divisor. Hence by (a), a is a unit. Since R is a commutative ring with unity and every non-zero element of R is a unit, R is a field.
- (c) If R is an integral domain, Then the set $S = \{n \in \mathbb{N} \mid n \cdot 1 = 0\}$ is not empty and $p = \min S$ is a prime number.

Solution. Let $T = \{n \cdot 1 \mid n \in \mathbb{N}\}$. Since $T \subseteq R$ and R is a finite set, there are $m, n \in \mathbb{N}$ with n > m such that $n \cdot 1 = m \cdot 1$. Hence $(n - m) \cdot 1 = 0$ with $n - m \in \mathbb{N}$ and $S \neq \emptyset$. Let $p = \min S$. Then p is a positive integer and $p \neq 1$ as $1 \neq 0$. Suppose p is a composite, i.e., p = ab with 1 < a, b < p. Then $0 = p \cdot 1 = ab \cdot 1 = (a \cdot 1)(b \cdot 1)$ and $a \cdot 1 = 0$ or $b \cdot 1 = 0$ as R is an integral domain. This contradicts the choice of p, which is the smallest element in S.

(d) Suppose $R = \{c_0 + c_1\alpha + c_2\alpha^2 \mid c_0, c_1, c_2 \in \mathbb{Z}_2\}$, a commutative ring containing \mathbb{Z}_2 , and $\alpha^3 + \alpha + 1 = 0$. Write a multiplication table (with respect to multiplication).

Solution. Since $\alpha^3 + \alpha + 1 = 0$ and $c_0, c_1, c_2 \in \mathbb{Z}_2$, $\alpha^3 = 1 + \alpha$. Hence $\alpha^4 = \alpha \cdot \alpha^3 = \alpha + \alpha^2$ and $\alpha^5 = 1 + \alpha + \alpha^2, \ldots$

	α^i	0	1	α	$1 + \alpha$	α^2	$1 + \alpha^{2}$	$\alpha + \alpha^2$	$1 + \alpha + \alpha^2$
0		0	0	0	0	0	0	0	0
1	α^0	0	1	α	$1 + \alpha$	α^2	$1 + \alpha^{2}$	$\alpha + \alpha^2$	$1 + \alpha + \alpha^2$
α	α^1	0	α	α^2	$\alpha + \alpha^2$	$1 + \alpha$	1	$1 + \alpha + \alpha^2$	$1 + \alpha^{2}$
$1 + \alpha$	α^3	0	$1 + \alpha$	$\alpha + \alpha^2$	$1 + \alpha^2$	$1 + \alpha + \alpha^2$	α^2	1	α
α^2	α^2	0	α^2	$1 + \alpha$	$1 + \alpha + \alpha^2$	$\alpha + \alpha^2$	α	$1 + \alpha^2$	1
$1 + \alpha^{2}$	α^6	0	$1 + \alpha^{2}$	1	α^2	α	$1 + \alpha + \alpha^2$	$1 + \alpha$	$\alpha + \alpha^2$
$\alpha + \alpha^2$	α^4	0	$\alpha + \alpha^2$	$1 + \alpha + \alpha^2$	1	$1 + \alpha^{2}$	$1 + \alpha$	α	α^2
$1 + \alpha + \alpha^2$	α^5	0	$1 + \alpha + \alpha^2$	$1 + \alpha^{2}$	α	1	$\alpha + \alpha^2$	α^2	$1 + \alpha$

- (e) Let R be as in (d). show that (i) R is a field and that (ii) $\beta^8 = \beta$ for all $\beta \in R$. Solution. Since in each row of non-zero element, 1 appears, R is a field. Since $\alpha^7 = 1$ and $R \setminus \{0\}$ is generated by α multiplicatively, $\beta^7 = 1$ for every non-zero element of R. Thus $\beta^8 = \beta$ for all elements of R.
- 3. Let R be an integral domain, R[x] and R[x, y] rings of polynomials over R. (25pts)
 - (a) Show that U(R[x, y]) = U(R). Solution. Since R[x, y] = (R[x])[y], by I (b), U(R[x, y]) = U(R[x]) = U(R).
 - (b) Let $f(x, y), g(x, y) \in R[x, y]$. Show that if $\langle f(x, y) \rangle = \langle g(x, y) \rangle$, then there exists $a \in U(R)$ such that $f(x, y) = a \cdot g(x, y)$. Solution. By (a) and Problem 1 (c), there exists $a \in U(R)$ such that $f(x, y) = a \cdot g(x, y)$.
 - (c) Show that R[x, y] is not a principal ideal domain. **Solution.** Let $\phi : R[x, y] \to R[x] (f(x, y) \mapsto f(x, 0))$. Then ϕ is an onto ring homomorphism. Let $A = \text{Ker}(\phi)$. Then $R[x, y]/A \approx R[x]$. Since R[x]

is an integral domain by I (a), A is a prime ideal. Since $y \in A$, and $1 \notin A$, A is an nonzero proper ideal. Suppose by way of contradiction, R[x, y] is a principal ideal domain. Then by Problem 1 (e), A is a maximal ideal and $R[x, y]/A \approx R[x]$ is a field. This is a contradiction as U(R[x]) = U(R) and x is not a unit.

- (d) $A = \{f(x) \in R[x] \mid f(0) = 0\}$ is a prime ideal. Solution. Let $\psi : R[x] \to R(f(x) \mapsto f(0))$, Then ψ is an onto ring homomorphism. Clearly $A = \text{Ker}(\psi)$. Since $R[x]/A \approx R$ and R is an integral domain, A is a prime ideal.
- (e) A in (d) is a maximal ideal if and only if R is a field.
 Solution. By the isomorphism R[x]/A ≈ R, R is a field if and only if A is a maximal ideal.
- 4. Let $a \in C$ be a zero of a nonzero polynomial p(x) in Q[x]. Let $\psi : Q[x] \to C(f(x) \mapsto f(a))$. Show the following. (25pts)
 - (a) Im(ψ) a subring of C and Ker(ψ) is an ideal of Q[x]. Solution. ψ is a ring homomorphism. So if $\psi(f(x)), \psi(g(x)) \in \text{Im}(\psi)$ with $f(x), g(x) \in Q[x], \psi(f(x)) - \psi(g(x)) = f(0) - g(0) = \psi(f(x) - g(x)) \in \text{Im}(\psi)$. Moreover, $\psi(f(x))\psi(g(x)) = f(0)g(0) = \psi(f(x)g(x)) \in \text{Im}(\psi)$. Hence Im(ψ) is a subring of C. Suppose $f(x), g(x) \in \text{Ker}(\psi)$ and $h(x) \in Q[x]$. Then $\psi(f(x) - g(x)) = f(0) - g(0) = 0 - 0 = 0$ and $\psi(h(x)f(x)) = h(0)f(0) = h(0) \cdot 0 = 0$. Hence Ker(ψ) is an ideal of Q[x].
 - (b) If $\operatorname{Ker}(\psi) = \langle p(x) \rangle$, then p(x) is irreducible over Q and $\operatorname{Im}(\psi)$ is a field. Solution. Since $Q[x]/\operatorname{Ker}(\psi) \approx \operatorname{Im}(\psi)$ and $\operatorname{Im}(\psi)$ is a subring of C containing 1, it is an integral domain. Hence $A = \operatorname{Ker}(\psi)$ is a prime ideal containing p(x). Hence by II (a), Q[x] is a principal ideal domain and by Problem 1 (e), A is a maximal ideal. Since $\langle p(x) \rangle = A$ is a prime ideal, p(x) is irreducible by Problem 1 (d) and $Q[x]/A \approx \operatorname{Im}(\psi)$ is a field.

For (c), (d), (e), suppose $p(x) = x^7 + 7x + 14$, $\gamma \in \mathbf{R}$ is a zero of p(x), and $E = \mathbf{Q}(\gamma)$.

- (c) Show that $[E : \mathbf{Q}] = 7$. Solution. By Eisenstein's criterion, p(x) is irreducible over \mathbf{Q} . Since γ is a zero of an irreducible polynomial p(x), $[E : \mathbf{Q}] = \deg p(x) = 7$.
- (d) Let F be a subfield of E containing Q. Then F = Q or F = E. Solution. Since 7 = [E : Q] = [E : F][F : Q], [E : F] = 1 or [F : Q] = 1. Hence F = E or F = Q.
- (e) E is not the splitting field of p(x) contained in C.
 Solution. Since p'(x) = 7x⁶ + 7 > 0, p(x) is increasing and γ is the only real zero. Hence other zeros are not real and they are not contained in Q(a) and E is not the splitting field. (The fact that C is algebraically closed is assumed.)

Hiroshi Suzuki @ International Christian University