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Algebra II Final 2015
If R is a commutative ring with unity 1, then U(R) denotes the set of units, i.e.,

invertible elements. In an integral domain D, a non-zero non-unit element α ∈ D is
irreducible if α = βγ with β, γ ∈ D implies β ∈ U(D) or γ ∈ U(D). For a1, a2, . . . , an ∈ R,
〈a1, a2, . . . , an〉 denotes the smallest ideal of R containing a1, a2, . . . , an. Then

〈a1, a2, . . . , an〉 = {r1a1 + r2a2 + · · · + rnan | r1, r2, . . . , rn ∈ R}.

When you apply a theorem, state it clearly. You may quote the following facts, if
necessary.

I. If R is an integral domain, then

(a) the polynomial ring R[x] over R is an integral domain;

(b) the unit group U(R[x]) = U(R).

II. Let F be a field and F [x] the polynomial ring over F .

(a) F [x] is a principal ideal domain.

(b) Let I be a non-zero ideal in F [x]. Let h(x) is a monic1 nonzero polynomial in
I of smallest degree. Then I = 〈h(x)〉.

Problems

1. Let R be a commutative ring with unity 1. (25pts)

(a) Write the condition that R becomes an integral domain, and the definition of
prime ideals.

(b) Show that R is an integral domain if and only if {0} is a prime ideal.

(c) Let R be an integral domain. Show that for a, b ∈ R, 〈a〉 = 〈b〉 if and only if
there is a unit u ∈ U(R) such that b = ua.

(d) Let R be an integral domain and p a non-zero element such that 〈p〉 is a prime
ideal. Show that p is irreducible.

(e) Suppose R is a principal ideal domain and P is a non-zero prime ideal. Show
that P is a maximal ideal.

1the leading coefficient is 1



2. Let R be a finite commutative ring with unity 1. (25pts)

(a) Show that every non-zero element of R is either a zero divisor or a unit.

(b) If R is an integral domain, then it is a field.

(c) If R is an integral domain, Then the set S = {n ∈ N | n · 1 = 0} is not empty
and p = minS is a prime number.

(d) Suppose R = {c0 + c1α + c2α
2 | c0, c1, c2 ∈ Z2}, a commutative ring contain-

ing Z2, and α3 + α + 1 = 0. Write a multiplication table (with respect to
multiplication).

(e) Let R be as in (d). show that (i) R is a field and that (ii) β8 = β for all β ∈ R.

3. Let R be an integral domain, R[x] and R[x, y] rings of polynomials over R. (25pts)

(a) Show that U(R[x, y]) = U(R).

(b) Let f(x, y), g(x, y) ∈ R[x, y]. Show that if 〈f(x, y)〉 = 〈g(x, y)〉, then there
exists a ∈ U(R) such that f(x, y) = a · g(x, y).

(c) Show that R[x, y] is not a principal ideal domain.

(d) A = {f(x) ∈ R[x] | f(0) = 0} is a prime ideal.

(e) A in (d) is a maximal ideal if and only if R is a field.

4. Let a ∈ C be a zero of a nonzero polynomial p(x) in Q[x]. Let ψ : Q[x] →
C (f(x) 7→ f(a)). Show the following. (25pts)

(a) Im(ψ) a subring of C and Ker(ψ) is an ideal of Q[x].

(b) If Ker(ψ) = 〈p(x)〉, then p(x) is irreducible over Q and Im(ψ) is a field.

For (c), (d), (e), suppose p(x) = x7+7x+14, γ ∈ R is a zero of p(x), and E = Q(γ).

(c) Show that [E : Q] = 7.

(d) Let F be a subfield of E containing Q. Then F = Q or F = E.

(e) E is not the splitting field of p(x) contained in C.
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Solutions to Algebra II Final 2015

1. Let R be a commutative ring with unity 1. (25pts)

(a) Write the condition that R becomes an integral domain, and the definition of
prime ideals.

Solution. R is an integral domain if R does not have a zero divisor, i.e., if
ab = 0 implies a = 0 or b = 0 for a, b ∈ R. A nonempty subset A of R is a
prime ideal if (i) A is a proper ideal, i.e., A 6= R and for all a, b ∈ A and r ∈ R,
a− b ∈ A and ra ∈ A, and if (ii) for a, b ∈ R, ab ∈ A implies a ∈ A or b ∈ A.

(b) Show that R is an integral domain if and only if {0} is a prime ideal.

Solution. First note that 0 6= 1 ∈ R, {0} is a proper ideal. Suppose R is an
integral domain and ab ∈ {0} for a, b ∈ R. Then ab = 0 and a = 0 or b = 0.
Thus a ∈ {0} or b ∈ {0} and {0} is a prime ideal.

Next assume that {0} is a prime ideal. If ab = 0 for some a, b ∈ R. Then
ab ∈ {0}. Since {0} is a prime ideal, a ∈ {0} or b ∈ {0}, i.e., a = 0 or b = 0.

(c) Let R be an integral domain. Show that for a, b ∈ R, 〈a〉 = 〈b〉 if and only if
there is a unit u ∈ U(R) such that b = ua.

Solution. Suppose b = ua for some unit u. Then a = u−1b. Hence b = ua ∈
〈a〉 and 〈b〉 ⊆ 〈a〉. Moreover, a = u−1b ∈ 〈b〉 and 〈a〉 ⊆ 〈b〉. Hence 〈a〉 = 〈b〉.
Conversely assume that 〈a〉 = 〈b〉. Since b ∈ 〈b〉 = 〈a〉, b = ua for some u ∈ R.
Similarly, a ∈ 〈a〉 = 〈b〉, a = vb for some v ∈ R. In particular, if b = 0, then
a = 0, in which case b = 0 = 1a and the assertion holds. Assume b 6= 0. Since
b = ua = uvb, (1−uv)b = 0. 1 = uv and u ∈ U(R). Hence the assertion holds.

(d) Let R be an integral domain and p a non-zero element such that 〈p〉 is a prime
ideal. Show that p is irreducible.

Solution. Since p 6= 0 and 〈p〉 6= 〈1〉, by (b), p is not a unit of R. Suppose
p = ab. Then ab ∈ 〈p〉 and 〈p〉 is a prime ideal, a ∈ 〈p〉 or b ∈ 〈p〉. By
symmetry we may assume that a ∈ 〈p〉. Then a = pq = abq for some q ∈ R.
Since a(1 − bq) = 0 and a 6= 0, bq = 1 and b is a unit. Thus p is irreducible.

(e) Suppose R is a principal ideal domain and P is a non-zero prime ideal. Show
that P is a maximal ideal.

Solution. Since R is a principal ideal domain, there exists P = 〈p〉. Since
P 6= {0}, p 6= 0. Since P is a prime ideal, p is irreducible by (d). Suppose
P ⊆ Q ⊂ R, i.e., Q is a proper ideal containing P . Since R is a principal ideal
domain, Q = 〈q〉 for some non-zero non-unit element q ∈ Q. Since p ∈ 〈p〉 =
P ⊆ Q = 〈q〉. Thus there exists r ∈ R such that p = rq. Since p is irreducible
and q is a non-unit element, r is a unit and by (c), P = 〈p〉 = 〈q〉 = Q and P
is a maximal ideal.

1



2. Let R be a finite commutative ring with unity 1. (25pts)

(a) Show that every non-zero element of R is either a zero divisor or a unit.

Solution. Let a be a non-zero element of R. Assume that a is not a zero-
divisor. Let φ : R → R (x 7→ ax). Then ax = ay implies a(x− y) = 0 and we
have x = y. Therefore, φ is one-to-one. Since R is a finite ring, φ is a bijection,
and there exist b ∈ R such that 1 = φ(b) = ab. Therefore, a is a unit.

(b) If R is an integral domain, then it is a field.

Solution. Let a be a non-zero element of R. Since R is an integral domain, a
is not a zero divisor. Hence by (a), a is a unit. Since R is a commutative ring
with unity and every non-zero element of R is a unit, R is a field.

(c) If R is an integral domain, Then the set S = {n ∈ N | n · 1 = 0} is not empty
and p = minS is a prime number.

Solution. Let T = {n · 1 | n ∈ N}. Since T ⊆ R and R is a finite set, there
are m,n ∈ N with n > m such that n · 1 = m · 1. Hence (n − m) · 1 = 0
with n−m ∈ N and S 6= ∅. Let p = minS. Then p is a positive integer and
p 6= 1 as 1 6= 0. Suppose p is a composite, i.e., p = ab with 1 < a, b < p. Then
0 = p · 1 = ab · 1 = (a · 1)(b · 1) and a · 1 = 0 or b · 1 = 0 as R is an integral
domain. This contradicts the choice of p, which is the smallest element in S.

(d) Suppose R = {c0 + c1α + c2α
2 | c0, c1, c2 ∈ Z2}, a commutative ring contain-

ing Z2, and α3 + α + 1 = 0. Write a multiplication table (with respect to
multiplication).

Solution. Since α3 + α + 1 = 0 and c0, c1, c2 ∈ Z2, α
3 = 1 + α. Hence

α4 = α · α3 = α + α2 and α5 = 1 + α + α2, . . . .

αi 0 1 α 1 + α α2 1 + α2 α + α2 1 + α + α2

0 0 0 0 0 0 0 0 0

1 α0 0 1 α 1 + α α2 1 + α2 α + α2 1 + α + α2

α α1 0 α α2 α + α2 1 + α 1 1 + α + α2 1 + α2

1 + α α3 0 1 + α α + α2 1 + α2 1 + α + α2 α2 1 α

α2 α2 0 α2 1 + α 1 + α + α2 α + α2 α 1 + α2 1

1 + α2 α6 0 1 + α2 1 α2 α 1 + α + α2 1 + α α + α2

α + α2 α4 0 α + α2 1 + α + α2 1 1 + α2 1 + α α α2

1 + α + α2 α5 0 1 + α + α2 1 + α2 α 1 α + α2 α2 1 + α

(e) Let R be as in (d). show that (i) R is a field and that (ii) β8 = β for all β ∈ R.

Solution. Since in each row of non-zero element, 1 appears, R is a field. Since
α7 = 1 and R\{0} is generated by α multiplicatively, β7 = 1 for every non-zero
element of R. Thus β8 = β for all elements of R.

3. Let R be an integral domain, R[x] and R[x, y] rings of polynomials over R. (25pts)

(a) Show that U(R[x, y]) = U(R).

Solution. Since R[x, y] = (R[x])[y], by I (b), U(R[x, y]) = U(R[x]) = U(R).

(b) Let f(x, y), g(x, y) ∈ R[x, y]. Show that if 〈f(x, y)〉 = 〈g(x, y)〉, then there
exists a ∈ U(R) such that f(x, y) = a · g(x, y).
Solution. By (a) and Problem 1 (c), there exists a ∈ U(R) such that f(x, y) =
a · g(x, y).

(c) Show that R[x, y] is not a principal ideal domain.

Solution. Let φ : R[x, y] → R[x] (f(x, y) 7→ f(x, 0)). Then φ is an onto
ring homomorphism. Let A = Ker(φ). Then R[x, y]/A ≈ R[x]. Since R[x]
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is an integral domain by I (a), A is a prime ideal. Since y ∈ A, and 1 6∈ A,
A is an nonzero proper ideal. Suppose by way of contradiction, R[x, y] is a
principal ideal domain. Then by Problem 1 (e), A is a maximal ideal and
R[x, y]/A ≈ R[x] is a field. This is a contradiction as U(R[x]) = U(R) and x
is not a unit.

(d) A = {f(x) ∈ R[x] | f(0) = 0} is a prime ideal.

Solution. Let ψ : R[x] → R (f(x) 7→ f(0)), Then ψ is an onto ring homomor-
phism. Clearly A = Ker(ψ). Since R[x]/A ≈ R and R is an integral domain,
A is a prime ideal.

(e) A in (d) is a maximal ideal if and only if R is a field.

Solution. By the isomorphism R[x]/A ≈ R, R is a field if and only if A is a
maximal ideal.

4. Let a ∈ C be a zero of a nonzero polynomial p(x) in Q[x]. Let ψ : Q[x] →
C (f(x) 7→ f(a)). Show the following. (25pts)

(a) Im(ψ) a subring of C and Ker(ψ) is an ideal of Q[x].

Solution. ψ is a ring homomorphism. So if ψ(f(x)), ψ(g(x)) ∈ Im(ψ) with
f(x), g(x) ∈ Q[x], ψ(f(x))−ψ(g(x)) = f(0)− g(0) = ψ(f(x)− g(x)) ∈ Im(ψ).
Moreover, ψ(f(x))ψ(g(x)) = f(0)g(0) = ψ(f(x)g(x)) ∈ Im(ψ). Hence Im(ψ)
is a subring of C. Suppose f(x), g(x) ∈ Ker(ψ) and h(x) ∈ Q[x]. Then
ψ(f(x) − g(x)) = f(0) − g(0) = 0 − 0 = 0 and ψ(h(x)f(x)) = h(0)f(0) =
h(0) · 0 = 0. Hence Ker(ψ) is an ideal of Q[x].

(b) If Ker(ψ) = 〈p(x)〉, then p(x) is irreducible over Q and Im(ψ) is a field.

Solution. Since Q[x]/Ker(ψ) ≈ Im(ψ) and Im(ψ) is a subring of C containing
1, it is an integral domain. Hence A = Ker(ψ) is a prime ideal containing p(x).
Hence by II (a), Q[x] is a principal ideal domain and by Problem 1 (e), A
is a maximal ideal. Since 〈p(x)〉 = A is a prime ideal, p(x) is irreducible by
Problem 1 (d) and Q[x]/A ≈ Im(ψ) is a field.

For (c), (d), (e), suppose p(x) = x7+7x+14, γ ∈ R is a zero of p(x), and E = Q(γ).

(c) Show that [E : Q] = 7.

Solution. By Eisenstein’s criterion, p(x) is irreducible over Q. Since γ is a
zero of an irreducible polynomial p(x), [E : Q] = deg p(x) = 7.

(d) Let F be a subfield of E containing Q. Then F = Q or F = E.

Solution. Since 7 = [E : Q] = [E : F ][F : Q], [E : F ] = 1 or [F : Q] = 1.
Hence F = E or F = Q.

(e) E is not the splitting field of p(x) contained in C.

Solution. Since p′(x) = 7x6 + 7 > 0, p(x) is increasing and γ is the only real
zero. Hence other zeros are not real and they are not contained in Q(a) and E
is not the splitting field. (The fact that C is algebraically closed is assumed.)
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