BCM I : Final 2012

ID#: Name:

1. Let P, ), R be statements.

(a) Complete the following truth table.

June 20, 2012

(10 pts)

(6 pts)

PlQ|IR|P = @ A R|(P A ~Q V (P A ~R)|
T|T | T
T|T | F
T|F|T
T|F | F
F|T\|T
F|T|F
F|F | T
F|F|F

(b) Let X =P = (QAR)and Y = (PA ~ Q) V (PA ~ R). Determine true of false of

each of the following.
(i) X =Y (True, False)

2. Prove the following.

(a) The square of an odd integer is congruent to 1 modulo 8.

(4 pts)

(ii) X =~Y (True, False)
(iii) X VY is tautology (True, False)

(iv) XV ~ Y is tautology (True, False)

(10 pts)

(b) The sum of the squares of two odd integers cannot be a perfect square.

4*.

5*.

Total
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3. Let n be a (fixed) positive integer. For a,b € Z, we write a =b (mod n), whenever there
is an integer ¢ such that b — a = cn.

(a) Show that a =b (mod n) is an equivalence relation of Z. (10 pts)

(b) Forae Z, [a]={x € Z | z=a (modn)}. Show that a =b (mod n) if and only
if [a] = [b]. (5 pts)

(c¢) Show that {[0],[1],...,[n — 1]} is a partition of Z. (5 pts)



ID#: Name:
4. Let f: X =Y, 9:Y - Zandh=gof: X — Z(x— g(f(z))) be functions.

(a) Show that if both f and g are onto, then so is h. (5 pts)

(b) Show that if & is one-to-one, then so is f. (5 pts)

(c) First show that if A and B are subsets of X, then f(AN B) C f(A) N f(B). Next
give an example that f(AN B) # f(A) N f(B). (5 pts)

(d) Show that if A is a subset of X and C a subset of Y, then f(AN f~1(C)) = f(A)NC.
(5 pts)



ID#: Name:

5. Let (—7/2,7/2)={z e R: —7/2 <x <7w/2},and [-7/2,7/2] ={xr e R: —7/2 <z <
/2}.

(a) State the definition of |A| = |B| for sets A, B, and show that |(—7/2,7/2)| = |R)|.
(Hint: tan(z)) (10 pts)

(b) Show |[—7/2,7/2]| = |R]. (10 pts)

6. Let f: X — Y is an onto function. State the definition of |A| < |B| for sets A, B and
show that for any set Z, |Map(Y, Z)| < [Map(X, Z)|. (10 pts)



ID#: Name:

7. For nonzero integers a and b, the greatest common divisor d = ged(a, b) is a positive integer
satisfying the following. (i) d | a and d | b. (ii) If ¢ | a and ¢ | b, then ¢ | d. In the following
we will show that there exist s,t € Z such that d = as + bt, where d = ged(a,b). Let
S={ax+by>0|z,yecZ}. (10 pts)

(a) Show that S # (.

(b) Let d = min S. Show that d | a and d | b.

(c) Show that d = min S is the greatest common divisor.

Please write your comments:
(1) About this course, especially suggestions for improvements.
(2) Topics in Mathematics or in other subjects you want to pursuit.



BCM I: Solutions to Final 2012 June 20, 2012

1. Let P, @, R be statements. (10 pts)

(a) Complete the following truth table. (6 pts)
Soln.

PlQ|R|[P = @ A R|(P A ~Q VvV (P A ~R)]
T|\T|T\|\T T T F F F
T|T|F\|T F F F T T
T|F|T\|T F F T T F
T|F|F\|T F F T T T
F|T|T\|F T T F F F
F|\T|F\|F T F F F F
F|F|T\|F T F F F F
F|\F|F\|\F T F F F F

(b) Let X =P = (QAR)and Y = (PA ~ Q) V (PA ~ R). Determine true of false of
each of the following. (4 pts)

() X =Y (True, [False]) (i) X =~ Y (Truel, False)
(iii) X VY is tautology (, False) (iv) XV ~ Y is tautology (True, )

2. Prove the following. (These are taken from homework.) (10 pts)

(a) The square of an odd integer is congruent to 1 modulo 8.

Soln. Let a be an odd integer. Then there exists an integer n such that a = 4n+1.
Now
a>=@An+1)> =16n>+8n+1=802n*+n) + 1.

(b) The sum of the squares of two odd integers cannot be a perfect square.
Soln. By (a), if a and b are odd integers, there exist an integer m such that

a? + b =8m +2 = 4(2m) + 2.

Suppose a? +b? = ¢? for some integer c. Then ¢? is even. Hence c is even. Let ¢ = 2s.
Then ¢? = 452 and it is divisible by 4. This is a contradiction as a? 4 b? = 4(2m) + 2
is not divisible by 4.

3. Let n be a (fixed) positive integer. For a,b € Z, we write a =b (mod n), whenever there
is an integer ¢ such that b — a = cn.

(a) Show that a =b (mod n) is an equivalence relation of Z. (10 pts)
Soln. (i) Sincea—a=0=0n,a=a (mod n). (Reflexive)
(ii) Suppose a = b (mod n). Then there is an integer ¢ such that b —a = cn. Thus
a—b=(—c)nand b=a (mod n). (Symmetric)
(ii) Suppose a =b (mod n) and ¢ =d (mod n). Then there are integers ¢ and d
such that b—a = cn and ¢c—b = dn. Thusc—a = (¢—b)+(b—a) = ecn+dn = (c+d)n
and a = ¢ (mod n). (Transitive)
Since the relation satisfies reflexive, symmetric and transitive properties, it is an
equivalence relation.



(b)

Forae Z,[a)]={x € Z|x=a (modn)}. Show that a =b (mod n) if and only
if [a] = [b]. (5 pts)
Soln. Suppose a =b (mod n). Let x € [a]. Then x =a (mod n). By transitiv-
ity, z=b (modn), and x € [b]. Thus a =b (mod n) implies [a] C [b].

By symmetricity, a = b (mod n) implies b = a (mod n). Hence by replacing a
with b, we have [b] C [a]. Therefore [a] = [b].

Conversely suppose [a] = [b]. Then by reflexivity, a = a (mod n) and a € Ia].
Therefore a € [b] and a =b (mod n).

Show that {[0], [1],...,[n — 1]} is a partition of Z. (5 pts)
Soln. For m € Z, there exist unique integers ¢,r such that m = qn + r with
0<r<mn-—1.Sincem—r=gqn,m=r (modn)and [m] = [r] for unique element
in {[0], [1],...,[n — 1]}. Since m € [m] = [r],

Z=[0U[lJU---Un-=1, and [i]N[j]=0if0<i<j<n-—1.

Since i € [i], each of [0], [1],...,[n — 1] is nonempty. Therefore {[0],[1],...,[n —1]} is
a partition of Z.

4. Let f: X =Y, 9g:Y - Zandh=gof: X — Z(x— g(f(z))) be functions.

(a)

Show that if both f and g are onto, then so is h. (5 pts)

Soln. Let z € Z. Since g : Y — Z is onto, there is y € Y such that g(y) = z. Now
since f: X — Y is onto and y € Y, there is x € X such that f(z) = y. Therefore,
x € X safisties

h(z) = g(f(x)) = g(y) = 2.
Thus h : X — Z is onto.

Show that if h is one-to-one, then so is f. (5 pts)

Soln. For z1,z9 € X, suppose f(x1) = f(z2). We will show that x; = x9. By
definition,

h(z1) = g(f(z1)) = g(f(x2)) = h(z2).
Since h is one-to-one, x1 = x9, and f is one-to-one as desired.
First show that if A and B are subsets of X, then f(AN B) C f(A)N f(B). Next
give an example that f(AN B) # f(A) N f(B). (5 pts)
Soln. Let x € AN B. Since x € A, f(x) € f(A). Similarly, since x € B, f(x) €
f(B). Thus f(z) € f(A) N f(B). Therefore f(AN B) C f(A) N f(B).
Let X ={1,2}, Y ={0}, A={1}. B={2} and f(1) = f(2) = 0. Then

f(ANB) = f(0) =0 # {0} = F{1}) N f({2}) = f(A) N f(B).

This is an example that f(AN B) # f(A) N f(B).

Show that if A is a subset of X and C a subset of Y, then f(ANf~1(C)) = f(A)NC.
(5 pts)

Soln. Since f~YC)={r e X | f(z) € C}, f(f~HC)) C C, by (c),

AR FC) € (AN F(FHC) € F(A) N C.
Let ¢ € f(A)NC. Since ¢ € f(A), there is a € A such that f(a) =

fla)=c€C,a€ f~C). Therefore a € AN[~H(C), c= f(a) € f(AN[~H(C)
fANCC fAN fFHC)).

Since
) and



5. Let (—7/2,7/2)={z € R: —7/2 < x < 7w/2},and [-7/2,7/2] ={x e R: —7/2 <z <
w/2}.

(a) State the definition of |A| = |B| for sets A, B, and show that |(—7/2,7/2)| = |R)|.
(Hint: tan(z)) (10 pts)
Soln. For sets A, B, |A| = |B| if and only if A = B = () or there is a bijection,
f:A— B. Let f: (-7/2,m/2) - R (x ~ tan(z)). Since f'(z) = sec?(z) =
1/cos®(z) > 0, f(x) is strictly increasing in the interval and it is one-to-one as
f(z1) < f(x2) whenever —7/2 < 21 < x2 < 7/2. Moreover, f(z) is continuous and

li = lim ¢t =00, and li = 1 t = —o0.
:1:~>17gl27 f(.’ﬁ) xﬂlrggf an(m) oo, atl x~>1I7P/2+f($) xHiI}rl 2+ an($) >
Hence by the intermediate value theorem, f is onto. Therefore f is a bijection and

[(=7/2,7/2)| = |R|.

(b) Show |[—7/2,7/2]| = |R|. (10 pts)
Soln. Let g:[-n/2,7/2] = R (z+— x) and h: R — [-7/2,7/2] (z — f~(z)),
where f(r) = tan(x) as in (a) (in particular f~!(x) = arctan(x)). Since f is a
bijection, h is one-to-one. Since g is clearly one-to-one, by the Schréder-Bernstein
Theore, there is a bijection from [—7/2,7/2] to R and |[—7/2,7/2]| = |R]|.

6. Let f: X — Y is an onto function. State the definition of |A| < |B| for sets A, B and
show that for any set Z, |Map(Y, Z)| < [Map(X, Z)|. (10 pts)

Soln. For sets A, B, |A| < |B| whenever A = () or there is a one-to-one function from A
to B.

If Z =10, Map(Y,Z) = ) and there is nothing to prove. Now let
F :Map(Y,Z) — Map(X,Z) (g+— go f).

Since f: X =Y andg:Y — Z, go f € Map(X, Z). We will show that F' is one-to-
one. Suppose F(g1) = F(g2) for g1,92 € Map(Y,Z). Since F(g1), F(g2) € Map(X, Z),
F(g1) = F(g2) implies that for all x € X,

91(f(x)) = (910 f)(x) = F(g1)(z) = F(g2)(x) = (92 © f)(x) = g2(f (x)).
Now for every y € Y, there exists x € X such that f(z) = y by assumption. Hence
91(y) = g2(y) for every y € Y by above. Thus g1 = g2 and F' is one-to-one.

7. For nonzero integers a and b, the greatest common divisor d = ged(a, b) is a positive integer
satisfying the following. (i) d | @ and d | b. (ii) If ¢ | @ and ¢ | b, then ¢ | d. In the following
we will show that there exist s,¢t € Z such that d = as + bt, where d = ged(a,b). Let
S={ax+by>0]|z,yecZ}. (10 pts)

(a) Show that S # 0.
Soln. Since a and b are nonzero, 0 < a® + b*> € S by taking # = a and y = b. Thus
S # 0.

(b) Let d = minS. Show that d | a and d | b.
Soln. Since d € S, there exist s,t € Z such that d = as + bt. Let a = dg + r where
¢,r€ Zand 0 <r <d. Thenr =a—dqg=a—(as+bt)g = a(l—sq)+b(—tq). Since
r<d=minS, r ¢ S. Thus r =0 and d | a. Similarly we have d | b.

(c¢) Show that d = min S is the greatest common divisor.
Soln. Since d € S, d > 0. Hence by (b) we only need to show (ii). Suppose
¢ | aand ¢ | b So there are ',/ € Z such that a = ca’ and b = ¢b’. Since
d=as+bt =cd's+ cb't =c(a's+b't), c|d as desired.
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