(Due at 7:00 p.m. on Fri. September 10, 2010)

Division:

ID#:

Name:

Let us consider the following system of linear equations in 6 unknowns x_1, x_2, \ldots, x_6 .

$$\begin{cases}
-2x_1 + 2x_2 + 5x_3 + 4x_4 - 9x_5 - 10x_6 = -13 \\
-x_1 + x_2 + 3x_3 + 3x_4 - 8x_5 - 7x_6 = -6 \\
2x_1 - 2x_2 - 4x_3 - x_4 - 3x_5 + 4x_6 = 14 \\
x_1 - x_2 - 2x_3 - x_4 + x_5 + 3x_6 = 7
\end{cases}
B = \begin{bmatrix}
1 & -1 & -2 & -1 & 1 & 3 & 7 \\
0 & 0 & 1 & 2 & -7 & -4 & 1 \\
2 & -2 & -4 & -1 & -3 & 4 & 14 \\
-2 & 2 & 5 & 4 & -9 & -10 & -13
\end{bmatrix}$$

1. Find the augmented matrix A of the system of linear equations above.

- 2. The matrix B is obtained by applying elementary row operations twice to the augmented matrix A. Write the elementary row operation using the notation [i; c], [i, j], or [i, j; c].
- 3. Find the reduced row echelon form of the augmented matrix A. (Solution only.)

4. Find the solution of the system of linear equations. Use parameters if necessary.

Message: (1) この授業に期待すること (2) あなたにとって数学とは [HP 掲載不可のときは明記のこと]

Solutions to Take-Home Quiz 1 (September 10, 2010)

$$\begin{cases}
-2x_1 + 2x_2 + 5x_3 + 4x_4 - 9x_5 - 10x_6 = -13 \\
-x_1 + x_2 + 3x_3 + 3x_4 - 8x_5 - 7x_6 = -6 \\
2x_1 - 2x_2 - 4x_3 - x_4 - 3x_5 + 4x_6 = 14 \\
x_1 - x_2 - 2x_3 - x_4 + x_5 + 3x_6 = 7
\end{cases}
B = \begin{bmatrix}
1 & -1 & -2 & -1 & 1 & 3 & 7 \\
0 & 0 & 1 & 2 & -7 & -4 & 1 \\
2 & -2 & -4 & -1 & -3 & 4 & 14 \\
-2 & 2 & 5 & 4 & -9 & -10 & -13
\end{bmatrix}$$

1. Find the augmented matrix A of the system of linear equations above.

Sol.

$$A = \begin{bmatrix} -2 & 2 & 5 & 4 & -9 & -10 & -13 \\ -1 & 1 & 3 & 3 & -8 & -7 & -6 \\ 2 & -2 & -4 & -1 & -3 & 4 & 14 \\ 1 & -1 & -2 & -1 & 1 & 3 & 7 \end{bmatrix}$$

- 2. The matrix B is obtained by applying elementary row operations twice to the augmented matrix A. Write the elementary row operation using the notation [i; c], [i, j], or [i, j; c].
 - **Sol.** First apply [1,4] and then [2,1;1].
- 3. Find the reduced row echelon form of the augmented matrix A. (Solution only.)
 - **Sol.** Apply the following consecutively in this order:

$$[3, 1; -2], [4, 1; 2], [4, 2; -1], [2, 3; -2], [1, 3; 1], [1, 2; 2].$$

Then we have

- There are many ways to obtain the reduced echelon form but the final matrix should be the same. When can we change the order of operations and when cannot?
- Starting from the reduced row echelon form above, is it possible to obtain the matrix A back again by applying elementary row operations? Can you find the sequence of such elementary row operations from the one we obtained the reduced echelon form from A with a slight modification?
- 4. Find the solution of the system of linear equations. Use parameters if necessary.

Sol.

$$\begin{cases} x_1 &= 9+s-2t-u \\ x_2 &= s \\ x_3 &= 1-3t \\ x_4 &= 5t+2u \\ x_5 &= t \\ x_6 &= u \end{cases}, \text{ or } \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} 9 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -2 \\ 0 \\ -3 \\ 5 \\ 1 \\ 0 \end{bmatrix} + u \begin{bmatrix} -1 \\ 0 \\ 0 \\ 2 \\ 0 \\ 1 \end{bmatrix}.$$

s, t and u are parameters.

(Due at 7:00 p.m. on Fri. September 17, 2010)

Division:

ID#:

Name:

Let L, T and C be matrices given below.

$$L = \begin{bmatrix} 0 & 1 & 0 \\ 6 & 2 & 2 \\ 0 & 3 & 4 \end{bmatrix}, \qquad T = \begin{bmatrix} 1 & 1 & 1 \\ 6 & 2 & -2 \\ 9 & -3 & 1 \end{bmatrix}, \qquad C = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 6 & 2 & -2 & 0 & 1 & 0 \\ 9 & -3 & 1 & 0 & 0 & 1 \end{bmatrix}.$$

1. Compute the product LT. (Show work!)

2. Find the reduced row echelon form of C.(Show work! Write operations as well in [i; c], [i, j], [i, j; c] form.)

3. Compute $T^{-1}LT$. (Show work!)

Message 欄:(理系以外の人も含め)高校・大学における数学は何のため? [HP 掲載不可は明記のこと]

Solutions to Take-Home Quiz 2 (September 17, 2010)

Let L, T and C be matrices given below.

$$L = \begin{bmatrix} 0 & 1 & 0 \\ 6 & 2 & 2 \\ 0 & 3 & 4 \end{bmatrix}, \qquad T = \begin{bmatrix} 1 & 1 & 1 \\ 6 & 2 & -2 \\ 9 & -3 & 1 \end{bmatrix}, \qquad C = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 6 & 2 & -2 & 0 & 1 & 0 \\ 9 & -3 & 1 & 0 & 0 & 1 \end{bmatrix}.$$

1. Compute the product LT. (Show work!)

Sol.

$$LT = \begin{bmatrix} 0 & 1 & 0 \\ 6 & 2 & 2 \\ 0 & 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 6 & 2 & -2 \\ 9 & -3 & 1 \end{bmatrix} = \begin{bmatrix} 0+6+0 & 0+2+0 & 0-2+0 \\ 6+12+18 & 6+4-6 & 6-4+2 \\ 0+18+36 & 0+6-12 & 0-6+4 \end{bmatrix} = \begin{bmatrix} 6 & 2 & -2 \\ 36 & 4 & 4 \\ 54 & -6 & -2 \end{bmatrix}$$

2. Find the reduced row echelon form of C. (Show work! Write operations as well in [i; c], [i, j], [i, j; c] form.)

Sol.

$$C = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 6 & 2 & -2 & 0 & 1 & 0 \\ 9 & -3 & 1 & 0 & 0 & 1 \end{bmatrix}^{[2,1;-6]} \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & -4 & -8 & -6 & 1 & 0 \\ 9 & -3 & 1 & 0 & 0 & 1 \end{bmatrix}^{[3,1;-9]} \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & -4 & -8 & -6 & 1 & 0 \\ 0 & -12 & -8 & -9 & 0 & 1 \end{bmatrix}^{[3,2;-3]} \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & -4 & -8 & -6 & 1 & 0 \\ 0 & 0 & 16 & 9 & -3 & 1 \end{bmatrix}^{[2;-1/4]} \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 2 & 3/2 & -1/4 & 0 \\ 0 & 0 & 16 & 9 & -3 & 1 \end{bmatrix}^{[3;-1/16]} \begin{bmatrix} 1 & 0 & -1 & -1/2 & 1/4 & 0 \\ 0 & 1 & 2 & 3/2 & -1/4 & 0 \\ 0 & 0 & 1 & 9/16 & -3/16 & 1/16 \end{bmatrix}^{[3;-1/16]} \begin{bmatrix} 1 & 0 & 0 & 1/16 & 1/16 \\ 0 & 1 & 2 & 3/2 & -1/4 & 0 \\ 0 & 0 & 1 & 9/16 & -3/16 & 1/16 \end{bmatrix}^{[2,4;-2]} \begin{bmatrix} 1 & 0 & 0 & 1/16 & 1/16 \\ 0 & 1 & 0 & 3/8 & 1/8 & -1/8 \\ 0 & 0 & 1 & 9/16 & -3/16 & 1/16 \end{bmatrix}^{[2,4;-2]}$$

3. Compute $T^{-1}LT$. (Show work!)

Sol.

$$T^{-1}LT = \begin{bmatrix} 1/16 & 1/16 & 1/16 \\ 3/8 & 1/8 & -1/8 \\ 9/16 & -3/16 & 1/16 \end{bmatrix} \begin{bmatrix} 6 & 2 & -2 \\ 36 & 4 & 4 \\ 54 & -6 & -2 \end{bmatrix} = \begin{bmatrix} 6 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -2 \end{bmatrix}.$$

Let D be the last matrix above, i.e., the diagonal matrix of size 3 with 6, 2, -2 on the diagonal. Since the columns of LT are scalar multiples of the columns of T by 6, 2, -2 respectively, we have

$$LT = TD$$
, or $T^{-1}LT = D$.

So this gives an alternate solution of this problem.

(Due at 7:00 p.m. on Fri. October 1, 2010)

Division:

ID#:

Name:

Let A, \boldsymbol{x} , \boldsymbol{b} , \boldsymbol{c} be as follows.

$$A = \begin{bmatrix} -2 & 1 & 4 & 0 \\ 1 & 0 & -2 & 0 \\ 0 & -3 & 1 & -1 \\ 1 & 3 & -2 & 1 \end{bmatrix}, \quad \boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}, \quad \boldsymbol{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}, \quad \text{and} \quad \boldsymbol{c} = \begin{bmatrix} 2 \\ 0 \\ 1 \\ 3 \end{bmatrix}.$$

1. Find a sequence of elementary row operations that transform $[A \mid I]$ to a reduced row echelon form. (Use [i; c], [i, j] and [i, j; c] notation.) (Show work!)

- 2. Write A as a product of elementary matrices P(i;c), P(i,j), P(i,j;c).
- 3. Show that for a given b, Ax = b always has a unique solution.
- 4. Find the solution x of an equation Ax = c.

Message 欄:将来の夢、目標、25年後の自分について、世界について。[HP 掲載不可は明記のこと]

Solutions to Take-Home Quiz 3 (October 1, 2010)

Let A, \boldsymbol{x} , \boldsymbol{b} , \boldsymbol{c} be as follows.

$$A = \begin{bmatrix} -2 & 1 & 4 & 0 \\ 1 & 0 & -2 & 0 \\ 0 & -3 & 1 & -1 \\ 1 & 3 & -2 & 1 \end{bmatrix}, \quad \boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}, \quad \boldsymbol{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}, \quad \text{and} \quad \boldsymbol{c} = \begin{bmatrix} 2 \\ 0 \\ 1 \\ 3 \end{bmatrix}.$$

1. Find a sequence of elementary row operations that transform $[A \mid I]$ to a reduced row echelon form. (Use [i; c], [i, j] and [i, j; c] notation.) (Show work!)

Sol.
$$[A \mid I]$$

$$\begin{bmatrix} 1,2] \\ -2 & 1 & 4 & 0 & 1 & 0 & 0 \\ 0 & -3 & 1 & -1 & 0 & 0 & 1 & 0 \\ 1 & 3 & -2 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{[2,1;2]} \begin{bmatrix} 1 & 0 & -2 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 2 & 0 & 0 \\ 0 & -3 & 1 & -1 & 0 & 0 & 1 & 0 \\ 1 & 3 & -2 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{[4,1;-1]} \begin{bmatrix} 1 & 0 & -2 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 2 & 0 & 0 \\ 0 & -3 & 1 & -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 3 & 0 & 1 & 0 & -1 & 0 & 1 \end{bmatrix} \xrightarrow{[3,4;1]} \begin{bmatrix} 1 & 0 & -2 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 & 1 & 1 \\ 0 & 3 & 0 & 1 & 0 & -1 & 0 & 1 \end{bmatrix} \xrightarrow{[4,2;-3]} \begin{bmatrix} 1 & 0 & -2 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 & 2 & 2 \\ 0 & 1 & 0 & 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 & 1 & 1 \\ 0 & 0 & 0 & 1 & -3 & -7 & 0 & 1 \end{bmatrix}$$

2. Write A as a product of elementary matrices P(i;c), P(i,j), P(i,j;c).

Sol. Since
$$A^{-1} = P(1,3;2)P(4,2;-3)P(3,4;1)P(4,1;-1)P(2,1;2)P(1,2),$$

 $A = P(1,2)^{-1}P(2,1;2)^{-1}P(4,1;-1)^{-1}P(3,4;1)^{-1}P(4,2;-3)^{-1}P(1,3;2)^{-1}$
 $= P(1,2)P(2,1;-2)P(4,1;1)P(3,4;-1)P(4,2;3)P(1,3;-2).$

3. Show that for a given b, Ax = b always has a unique solution.

Since A is invertible, A^{-1} exists and if we set $\mathbf{x} = A^{-1}\mathbf{b}$, then

$$A\mathbf{x} = AA^{-1}\mathbf{b} = I\mathbf{b} = \mathbf{b}.$$

Hence $A^{-1}\boldsymbol{b}$ is a solution. Moreover, if $A\boldsymbol{x} = \boldsymbol{b}$, then $\boldsymbol{x} = A^{-1}A\boldsymbol{x} = A^{-1}\boldsymbol{b}$ and \boldsymbol{x} is uniquely determined. Thus Ax = b has a unique solution $A^{-1}b$.

4. Find the solution x of an equation Ax = c.

Sol. As above,

$$\boldsymbol{x} = A^{-1}\boldsymbol{c} = \begin{bmatrix} 0 & -1 & 2 & 2 \\ 1 & 2 & 0 & 0 \\ 0 & -1 & 1 & 1 \\ -3 & -7 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 8 \\ 2 \\ 4 \\ -3 \end{bmatrix}.$$

(Due at 7:00 p.m. on Sat. October 9, 2010)

Division:

ID#:

Name:

Let A, \boldsymbol{x} , \boldsymbol{b} and B be the matrices given below.

$$A = \begin{bmatrix} -3 & 5 & 0 \\ 2 & 1 & -1 \\ -1 & 2 & 3 \end{bmatrix}, \quad \boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \quad \boldsymbol{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 & -2 & 1 \\ -3 & 5 & 1 & 0 \\ 2 & 1 & 2 & -1 \\ -1 & 2 & 3 & 3 \end{bmatrix}.$$

- 1. Determine det(A) by cofactor expansion along the <u>third column</u>.
- 2. Find adj(A). (Solution only!)
- 3. Use Cramer's Rule to express x_3 as a quotient of two determinants for the equation $A\mathbf{x} = \mathbf{b}$, and evaluate x_3 . (Solution only!)

- 4. Express det(B) by the cofactor expansion along the <u>first row</u> writing each of $C_{i,j}$ as a determinant. (Don't evaluate the determinant involved in $C_{i,j}$.)
- 5. Find det(B).

Message 欄: あなたにとって、豊かな生活とはどのようなものでしょうか。どのようなとき幸せだと感じますか。[HP 掲載不可は明記のこと]

Solutions to Take-Home Quiz 4

(October 9, 2010)

Let A, \boldsymbol{x} , \boldsymbol{b} and B be the matrices given below.

$$A = \begin{bmatrix} -3 & 5 & 0 \\ 2 & 1 & -1 \\ -1 & 2 & 3 \end{bmatrix}, \quad \boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \quad \boldsymbol{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 & -2 & 1 \\ -3 & 5 & 1 & 0 \\ 2 & 1 & 2 & -1 \\ -1 & 2 & 3 & 3 \end{bmatrix}.$$

1. Determine det(A) by cofactor expansion along the <u>third column</u>

Sol.
$$\det(A) = A_{1,3}C_{1,3} + A_{2,3}C_{2,3} + A_{3,3}C_{3,3}$$

$$=0(-1)^{1+3} \left| \begin{array}{cc} 2 & 1 \\ -1 & 2 \end{array} \right| + (-1)(-1)^{2+3} \left| \begin{array}{cc} -3 & 5 \\ -1 & 2 \end{array} \right| + 3(-1)^{3+3} \left| \begin{array}{cc} -3 & 5 \\ 2 & 1 \end{array} \right| = -1 - 39 = -40.$$

2. Find adj(A). (Solution only!)

Sol. $C_{i,j} = (-1)^{i+j} M_{i,j}$ and $M_{i,j}$ is the determinant of the submatrix that remains after the *i*th row and *j*th column are deleted from A.

$$\operatorname{adj}(A) = \begin{bmatrix} C_{1,1} & C_{2,1} & C_{3,1} \\ C_{1,2} & C_{2,2} & C_{3,2} \\ C_{1,3} & C_{2,3} & C_{3,3} \end{bmatrix} = \begin{bmatrix} \begin{vmatrix} 1 & -1 \\ 2 & 3 \end{vmatrix} & -\begin{vmatrix} 5 & 0 \\ 2 & 3 \end{vmatrix} & \begin{vmatrix} 5 & 0 \\ 1 & -1 \end{vmatrix} \\ -\begin{vmatrix} 2 & -1 \\ -1 & 3 \end{vmatrix} & \begin{vmatrix} -3 & 0 \\ -1 & 3 \end{vmatrix} & -\begin{vmatrix} -3 & 0 \\ 2 & -1 \end{vmatrix} \\ \begin{vmatrix} 2 & 1 \\ -1 & 2 \end{vmatrix} & -\begin{vmatrix} -3 & 5 \\ -1 & 2 \end{vmatrix} & \begin{vmatrix} -3 & 5 \\ 2 & 1 \end{vmatrix} \end{bmatrix} = \begin{bmatrix} 5 & -15 & -5 \\ -5 & -9 & -3 \\ 5 & 1 & -13 \end{bmatrix}$$

3. Use Cramer's Rule to express x_3 as a quotient of two determinants for the equation $A\mathbf{x} = \mathbf{b}$, and evaluate x_3 . (Solution only!)

Sol.

$$x_3 = \frac{\begin{vmatrix} -3 & 5 & 1 \\ 2 & 1 & 2 \\ -1 & 2 & 3 \end{vmatrix}}{\begin{vmatrix} -3 & 5 & 0 \\ 2 & 1 & -1 \\ -1 & 2 & 3 \end{vmatrix}} = \frac{-32}{-40} = \frac{4}{5}$$

4. Express det(B) by the cofactor expansion along the <u>first row</u> writing each of $C_{i,j}$ as a determinant. (Don't evaluate the determinant involved in $C_{i,j}$.)

Sol.
$$det(B) = 1 \cdot C_{1,1} + 0 \cdot C_{1,2} + (-2) \cdot C_{1,3} + 1 \cdot C_{1,4}$$

$$= \begin{vmatrix} 5 & 1 & 0 \\ 1 & 2 & -1 \\ 2 & 3 & 3 \end{vmatrix} - 2 \cdot \begin{vmatrix} -3 & 5 & 0 \\ 2 & 1 & -1 \\ -1 & 2 & 3 \end{vmatrix} - \begin{vmatrix} -3 & 5 & 1 \\ 2 & 1 & 2 \\ -1 & 2 & 3 \end{vmatrix} = 40 - 2 \cdot (-40) - (-32) = 152.$$

5. Find det(B).

Sol. See above.

(Due at 7:00 p.m. on Fri. October 15, 2010)

Division:

ID#:

Name:

Let A and B be the 5×5 matrices given below.

$$A = \begin{bmatrix} 2 & 0 & -3 & 1 & 4 \\ -2 & 2 & -1 & -3 & 2 \\ -3 & -1 & 0 & 4 & 1 \\ 2 & 2 & 1 & 3 & -2 \\ -2 & -3 & 3 & -2 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} a & b & b & b & b \\ b & a & b & b & b \\ b & b & a & b & b \\ b & b & b & a & b \\ b & b & b & b & a \end{bmatrix}.$$

1. Find the numbers x, y and z. (Solutions only.)

$$\det(A) = x \cdot \begin{vmatrix} 2 & 2 & 1 & 3 & -2 \\ 8 & 6 & 0 & 10 & -2 \\ 0 & 4 & 0 & 0 & 0 \\ -3 & -1 & 0 & 4 & 1 \\ -8 & -9 & 0 & -11 & 10 \end{vmatrix} = y \cdot \begin{vmatrix} 8 & 6 & 10 & -2 \\ 0 & 1 & 0 & 0 \\ -3 & -1 & 4 & 1 \\ -8 & -9 & -11 & 10 \end{vmatrix} = z \cdot \begin{vmatrix} 4 & 5 & -1 \\ -3 & 4 & 1 \\ -8 & -11 & 10 \end{vmatrix}.$$

$$x = \quad , \quad y = \quad , \quad z = \quad .$$

2. Find det(A). (Show work.)

3. Explain why the following equalities hold.

4. Find the condition that B is invertible.

Message 欄:数学(または他の科目)など何かを学んでいて感激したことについて。[HP 掲載不可は明記のこと]

Solutions to Take-Home Quiz 5 (October 15, 2010)

Let A and B be the 5×5 matrices given below.

$$A = \begin{bmatrix} 2 & 0 & -3 & 1 & 4 \\ -2 & 2 & -1 & -3 & 2 \\ -3 & -1 & 0 & 4 & 1 \\ 2 & 2 & 1 & 3 & -2 \\ -2 & -3 & 3 & -2 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} a & b & b & b & b \\ b & a & b & b & b \\ b & b & a & b & b \\ b & b & b & a & b \\ b & b & b & b & a \end{bmatrix}.$$

1. Find the numbers x, y and z. (Solutions only.)

$$\det(A) = x \cdot \begin{vmatrix} 2 & 2 & 1 & 3 & -2 \\ 8 & 6 & 0 & 10 & -2 \\ 0 & 4 & 0 & 0 & 0 \\ -3 & -1 & 0 & 4 & 1 \\ -8 & -9 & 0 & -11 & 10 \end{vmatrix} = y \cdot \begin{vmatrix} 8 & 6 & 10 & -2 \\ 0 & 1 & 0 & 0 \\ -3 & -1 & 4 & 1 \\ -8 & -9 & -11 & 10 \end{vmatrix} = z \cdot \begin{vmatrix} 4 & 5 & -1 \\ -3 & 4 & 1 \\ -8 & -11 & 10 \end{vmatrix}.$$

$$x = -1, \quad y = -4, \quad z = -8.$$

2. Find det(A). (Show work.)

Sol.

$$\det(A) = -8 \cdot \begin{vmatrix} 4 & 5 & -1 \\ -3 & 4 & 1 \\ -8 & -11 & 10 \end{vmatrix} = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 2 & 1 \end{bmatrix} - 8 \cdot \begin{vmatrix} 1 & 9 & 0 \\ -3 & 4 & 1 \\ 22 & -51 & 0 \end{vmatrix} = 8 \begin{vmatrix} 1 & 9 \\ 22 & -51 \end{vmatrix}$$
$$= 8(-51 - 9 \cdot 22) = -8 \cdot 249 = -1992.$$

3. Explain why the following equalities hold.

$$\det(B) \stackrel{(1)}{=} \begin{vmatrix} a+4b & a+4b & a+4b & a+4b & a+4b \\ b & a & b & b & b \\ b & b & a & b & b \\ b & b & b & a & b \\ b & b & b & b & a \end{vmatrix} \stackrel{(2)}{=} (a+4b) \begin{vmatrix} 1 & 1 & 1 & 1 & 1 \\ b & a & b & b & b \\ b & b & a & b \\ b & b & b & a & b \\ b & b & b & b & a \end{vmatrix}.$$

Sol. (1) Applied the following row operations. [1,2;1], [1,3;1], [1,4;1], [1,5;1] and the value of the determinant remains the same.

(2) Factor out a + 4b from the first row.

4. Find the condition that B is invertible.

Sol. By applying the operations [2, 1; -b], [3, 1; -b], [4, 1; -b], [5, 1; -b], we have

$$\det(B) = (a+4b) \begin{vmatrix} 1 & 1 & 1 & 1 & 1 \\ b & a & b & b & b \\ b & b & a & b & b \\ b & b & b & b & a \end{vmatrix} = (a+4b) \begin{vmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & a-b & 0 & 0 & 0 \\ 0 & 0 & a-b & 0 & 0 \\ 0 & 0 & 0 & a-b & 0 \\ 0 & 0 & 0 & a-b & 0 \end{vmatrix}$$

 $=(a+4b)(a-b)^4$. So B is invertible if and only if $(a+4b)(a-b)\neq 0$ if and only if $a+4b\neq 0$ and $a-b\neq 0$.

(Due at 7:00 p.m. on Fri. October 22, 2010)

Division:

ID#:

Name:

Let \boldsymbol{u} , \boldsymbol{v} , \boldsymbol{w} and A be as follows.

$$\boldsymbol{u} = (1, 2, -1), \ \boldsymbol{v} = (3, 0, -2), \ \boldsymbol{w} = (5, -4, 6), \ \text{and} \ A = \begin{bmatrix} 0 & 1 & 0 \\ 6 & 2 & 2 \\ 0 & 3 & 4 \end{bmatrix}.$$

- 1. Compute $\boldsymbol{u} \times \boldsymbol{v}$. (Show work!)
- 2. Find the volume of the parallelopiped (heiko-6-mentai) in 3-space determined by the vectors $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$. (Show work!)
- 3. Find the characteristic polynomial of A and all eigenvalues of it. (Show work!)

4. Find an eigenvector of A corresponding to its smallest eigenvalue. (Show work!)

Message 欄:あなたにとって一番たいせつな(または、たいせつにしたい)もの、ことはなんですか。そのほか、何でもどうぞ。[HP 掲載不可は明記のこと]

Solutions to Take-Home Quiz 6 (October 22, 2010)

Let \boldsymbol{u} , \boldsymbol{v} , \boldsymbol{w} and A be as follows.

$$\mathbf{u} = (1, 2, -1), \ \mathbf{v} = (3, 0, -2), \ \mathbf{w} = (5, -4, 6), \ \text{and} \ A = \begin{bmatrix} 0 & 1 & 0 \\ 6 & 2 & 2 \\ 0 & 3 & 4 \end{bmatrix}.$$

1. Compute $\boldsymbol{u} \times \boldsymbol{v}$.

Sol.

$$\boldsymbol{u} \times \boldsymbol{v} = \left(\left| \begin{array}{cc|c} 2 & -1 \\ 0 & -2 \end{array} \right|, - \left| \begin{array}{cc|c} 1 & -1 \\ 3 & -2 \end{array} \right|, \left| \begin{array}{cc|c} 1 & 2 \\ 3 & 0 \end{array} \right| \right) = (-4, -1, -6).$$

2. Find the volume of the parallelopiped (heiko-6-mentai) in 3-space determined by the vectors $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$.

Sol.
$$|\boldsymbol{w} \cdot (\boldsymbol{u} \times \boldsymbol{v})| = |(5, -4, 6) \cdot (-4, -1, -6)| = |-20 + 4 - 36| = 52.$$

N.B. Do not forget to take the absolute value!

3. Find the characteristic polynomial of A and all eigenvalues of it.

Sol.

$$\det(xI - A) = \begin{vmatrix} x & -1 & 0 \\ -6 & x - 2 & -2 \\ 0 & -3 & x - 4 \end{vmatrix}$$

$$= x(x - 2)(x - 4) - 6x - 6(x - 4)$$

$$= x(x - 2)(x - 4) - 12(x - 2)$$

$$= (x - 6)(x - 2)(x + 2), \text{ or}$$

$$= x^3 - 6x^2 - 4x + 24.$$

6, 2 and -2 are eigenvalues of A.

4. Find an eigenvector of A corresponding to its smallest eigenvalue.

Sol. The smallest eigenvalue of A is -2. Find a nonzero vector \boldsymbol{x} satisfying $((-2)I - A)\boldsymbol{x} = \boldsymbol{0}$ (or $A\boldsymbol{x} = (-2)\boldsymbol{x}$).

$$\begin{bmatrix} -2 & -1 & 0 & 0 \\ -6 & -4 & -2 & 0 \\ 0 & -3 & -6 & 0 \end{bmatrix} \stackrel{[2,1;-3]}{\rightarrow} \begin{bmatrix} -2 & -1 & 0 & 0 \\ 0 & -1 & -2 & 0 \\ 0 & -3 & -6 & 0 \end{bmatrix} \stackrel{[2;-1]}{\rightarrow} \begin{bmatrix} -2 & -1 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & -3 & -6 & 0 \end{bmatrix}$$

$$\stackrel{[1,2;1]}{\rightarrow} \left[\begin{array}{ccccc} -2 & 0 & 2 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & -3 & -6 & 0 \end{array} \right] \stackrel{[3,2;3]}{\rightarrow} \left[\begin{array}{ccccc} -2 & 0 & 2 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right] \stackrel{[1;-1/2]}{\rightarrow} \left[\begin{array}{ccccc} 1 & 0 & -1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right].$$

The solutions are

$$\boldsymbol{x} = t \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$
 (t is a parameter), and $\begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$

is an eigenvector. (You may choose any non-zero t.)

See Quiz 2. The matrix A is diagonalizable by a matrix T in it.

(Due at 7:00 p.m. on Fri. October 29, 2010)

Division:

ID#:

Name:

Let
$$A = \begin{bmatrix} 3 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 3 \end{bmatrix}$$
 and $\mathbf{e} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

- 1. Find the characteristic polynomial p(x) and all eigenvalues of A. (Solutions only!)
- 2. A is invertible. Why? (Use p(x) only.)
- 3. Find an eigenvector corresponding to each of the eigenvalues of A. (Show work!)

4. For a nonnegetive integer n, find $A^n e$. (Show work!)

Message 欄 (何でもどうぞ): ICU をどのようにして知りましたか。ICU をより魅力的にするにはどうしたらよいでしょうか。[HP 掲載不可は明記のこと]

Solutions to Take-Home Quiz 7 (October 29, 2010)

Let
$$A = \begin{bmatrix} 3 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 3 \end{bmatrix}$$
 and $\mathbf{e} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

- 1. Find the characteristic polynomial p(x) and all eigenvalues of A. (Solutions only!)
 - **Sol.** $p(x) = x^3 8x^2 + 21x + 6$ and eigenvalues are 4, 3 and 1.

$$\det(xI - A) = \begin{vmatrix} x - 3 & -1 & 0 \\ -1 & x - 2 & -1 \\ 0 & -1 & x - 3 \end{vmatrix} = (x - 3)^2(x - 2) - 2(x - 3)$$
$$= (x - 3)(x^2 - 5x + 6 - 2) = (x - 4)(x - 3)(x - 1).$$

- 2. A is invertible. Why? (Use p(x) only.)
 - **Sol.** Since $p(0) \neq 0$, $0 \neq \det(-A) = (-1)^3 \det(A)$. Hence A is invertible.
- 3. Find an eigenvector corresponding to each of the eigenvalues of A. (Show work!)
 - **Sol.** Let v_1, v_2, v_3 be eigenvectors corresponding to 4, 3, 1 respectively.

Since each row sum is 4, if $\mathbf{v}_1 = [1, 1, 1]^T$, $A\mathbf{v}_1 = 4\mathbf{v}_1$. and \mathbf{v}_1 is an eigenvector corresponding to 4.

$$\begin{bmatrix} 0 & -1 & 0 & 0 \\ -1 & 1 & -1 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \ \boldsymbol{v}_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}.$$

$$\begin{bmatrix} -2 & -1 & 0 & 0 \\ -1 & -1 & -1 & 0 \\ 0 & -1 & -2 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \\ 2 & 1 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \ \boldsymbol{v}_3 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}.$$

- 4. For a nonnegetive integer n, find $A^n e$. (Show work!)
 - Sol. Set $x_1v_1 + x_2v_2 + x_3v_3 = e$. Then

$$\begin{bmatrix} 1 & -1 & 1 & 1 \\ 1 & 0 & -2 & 0 \\ 1 & 1 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & 1 & 0 & -\frac{1}{2} \\ 0 & 1 & -3 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & \frac{1}{2} \\ 0 & 1 & 0 & -\frac{1}{2} \\ 0 & 0 & -3 & -\frac{1}{2} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & \frac{1}{3} \\ 0 & 1 & 0 & -\frac{1}{2} \\ 0 & 0 & 1 & \frac{1}{6} \end{bmatrix}.$$

Thus $x_1 = 1/3$, $x_2 = -1/2$ and $x_3 = 1/6$ and $\boldsymbol{e} = \frac{1}{6}(2\boldsymbol{v}_1 - 3\boldsymbol{v}_2 + \boldsymbol{v}_3)$. Hence

$$A^{n}\boldsymbol{e} = \frac{1}{6}A^{n}(2\boldsymbol{v}_{1} - 3\boldsymbol{v}_{2} + \boldsymbol{v}_{3}) = \frac{1}{6}\left(2\cdot4^{n}\begin{bmatrix}1\\1\\1\end{bmatrix} - 3\cdot3^{n}\begin{bmatrix}-1\\0\\1\end{bmatrix} + 1^{n}\begin{bmatrix}1\\-2\\1\end{bmatrix}\right).$$

Alt. Sol. Let $T = [v_1, v_2, v_3]$. Then $T^T T = \text{diag}(3, 2, 6)$. Hence $T^{-1} = \text{diag}(1/3, 1/2, 1/6)T^T$. Therefore if D = diag(4, 3, 1), then $T^{-1}AT = D$. So

$$A^{n}\boldsymbol{e} = TD^{n}T^{-1}\boldsymbol{e} = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 0 & -2 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 4^{n} & 0 & 0 \\ 0 & 3^{n} & 0 \\ 0 & 0 & 1^{n} \end{bmatrix} \begin{bmatrix} 1/3 & 1/3 & 1/3 \\ -1/2 & 0 & 1/2 \\ 1/6 & -2/6 & 1/6 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$= \frac{1}{6} \cdot \begin{bmatrix} 1 & -1 & 1 \\ 1 & 0 & -2 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \cdot 4^{n} \\ -3 \cdot 3^{n} \\ 1^{n} \end{bmatrix} = \frac{1}{6} \cdot \begin{bmatrix} 2 \cdot 4^{n} + 3 \cdot 3^{n} + 1 \\ 2 \cdot 4^{n} - 2 \\ 2 \cdot 4^{n} - 3 \cdot 3^{n} + 1 \end{bmatrix}.$$