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6 Determinants and Cofactor Example 6.1 Let n=2.

Expansion A [ a b

d ] ) M1,1 =d, M1,2 =G M2,1 =10, M2,2 = a.

Let us consider the following equations of 2 X2 matrix.
~ d —c . d —b
el Y] A= = 5]
d _
c © and det(A) = ad — be.
_ d—b 10| | d =b a b
= (ad—be) 01| | =¢ a ¢ d | Theorem 6.1 Let A = (a;;) be a square matriz of

size n and adj(A) the adjoint of A. Then
If ad — bc # 0, the matrix on the left has its inverse.

If ad — be = 0, then it cannot have its inverse. Why? A-adj(A) = det(A)] = adj(A) - A.
Definition 6.1 Let A = (a; ;) be a square matrix of a1 a1z -+ ain
size n. We define the determinant of A denoted by . . . . Cipn -+ Cjai oo Cpn
det(A) recursively as follows. : : R Crz -+ Cjo oo Chp
a; 1 Q2 Qin . . .
1. If n =1 and A = (a), then det(A) = a. : : R R
Cim -+ Cjm -+ Cun
2. Suppose n > 1 and the determinant of all square Gn,1 An2  “* Qngn
matrices of size n — 1 are defined. Then for det(A) 0 0
1 < 4,7 < n, the minor of entry a; ; is denoted 0 det(A) - 0

by M; ; and is defined to be the determinant of = ) ) ) .
the submatrix that remains after ith row and : : - :
jth column are deleted from A. The number 0 0 e det(A)
(—1)"9M; ; is denoted by C; ; and is called the
cofactor of entry a; ;. Let Corollary 6.2 (2.1.1, 2.1.2) Let A = (a;;) be a
square matriz of size n and C;; the cofactor entry
det(A) =a1,1C11 +a12C12+ -+ a1,C1 0 of a;j. Then the following hold.

(i) det(A) = a;1Ci1 + a;2Cio + -+ + a; ,Cipy for

Definition 6.2 Let A = (a; ;) be a square matrix of 179
i=1,2,...,n.

size n. Then the left matrix is called the matriz of
cofactors from A, and the matrix on the right that (ii) det(A) = a1 ;C1j +as;Coj+ -+ +anjCnj for
is the transpose of the left is called the adjoint of A ji=12,... ,’n. 7 o T

and denoted by adj(A).
(111) ai’le,l + ai,ng,g + -4 ai’an’n =0 fOT 1, =

Cip Cig -+ Cin 1,2,...,n withi# j.
: C C e Oy,
A= ?’1 ?72 ) 2 , (IV) al,jcl,i + ag,ng’i + -+ an,jCi,n =0 fO’I“ 1, =
: S 1,2,....n withi # j.
! 2 ' (iv) A is invertible if and only if det(A) # 0. In this
Cip Csp -+ Cha case
adj(A) = Cia Caa -+ Cppo Ciqp Coy -+ Cha
- . A71 1 01,2 02,2 e On72
Cipn Capn -+ Cpn ~ det(A) : : - :
Cl,n C2,n e Cn n
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Remarks. At this point by computation it is pos-
sible to prove (i) (iii) of the corollary. But it is very
difficult to prove the rest. As for (iv), it can be shown
that det(A) # 0 implies the invertibility of A but the
converse is not yet possible.

7 Evaluation of Determinants
Review Let A = (a; ;) be an n x n matrix.
L adj(4) = A" = (Ci )" = (-1)" My )"
2. Aadj(A) = det(A)I = adj(A)A.
3. If det(A) # 0, then A is invertible and A= =
T&A) adj(A4).
4. If Az = b and det(A) # 0, then z = A~'b =
7det1(A) adj(A)b.

Theorem 7.1 (Cramer’s Rule (2.1.4)) If Az =
b is a system of n linear equations in n unknowns
such that det(A) # 0, then the system has a unique
solution. The solution is

. _ det(Ay) . _ det(As) . _ det(Ay)
DT det(A4) TP det(A4) T det(A)

where Aj is the matriz obtained by replacing the en-
tries in the jth column of A by b.

Proof. Recall that if C; ; is a cofactor of entry a; ;,
and

det(A) = CLL]'CL]‘ + a27jC'2,j + -
+a,,;Cpj for j=1,2,...,n
by Corollary 6.2 (iv).
z = A7'b
- Cl,l 02,1 Cn,l bl i
1 Cia2 Cao Ch,2 ba
~ det(A) : : : :
L Cl,n 02,71 Cn,n bn ]
_ b1C11 + 0201+ - +0,Ch 1 ]
_ 1 b1Cr2 +b2Co2+ -+ 0,0 2
det(A)
L blcl,n + b202,n +-+ bncn,n i

Definition 7.1 Let A = (a; ;) be a square matrix of
size n.

1. A is said to be an upper triangular matriz if
a;; = 0 for all 7 > j.

2. Ais said to be a lower triangular matrizif a; ; =
0 for all ¢ < j.

3. A is said to be a diagonal matriz if a; ; = 0 for
all i # j.

Theorem 7.2 (2.1.3, 2.2.2, 2.2.3) Let A = (a; )
be a square matriz of size n.

(i) det(A) = det(AT).

(ii) If A is a triangular matriz (upper triangular
lower triangular, or diagonal). then det(A) =
1,122 Ann-

(iii) The value of the determinant changes as follows
by elementary row operations.

(a) A bl g o det(B) = cdet(A4), and
|P(i; ) Al = |P(i; )| A] = c|A].

m A Y B o det(B) = —det(4), and
|P(i, ) Al = |P(i, )| Al = —|A].

© A " B = det(B) = det(A), and
|P(i, 35 c)A| = |P(i, j; )| |A] = |A].

Similar results hold for elementary column opera-
tions by Theorem 7.2 (i).

8 Properties of the Determi-
nant Function

Let A = (a;;) be an n x n square matrix. We write

a
a1l a12 a1,n '
DR a2
A= | %21 a22 a2n | _ ) )
an,1 Qn2 Qn,n a,
where a; = [a;1,a;2, ..., ).

Proposition 8.1 Let A = (a;;) be an n x n square
matriz and a; its i-th row. Then the following hold.

(i) For a constant c,

ai

)

cdet(A) =det | c-a;

Qp
ai ay ay
det | a;+a; | =det | a; | +det| a}
an an a"L

(ii) If a; = a; for some i # j, then det(A) = 0.



Proof. (i) Straightforward by cofactor expansion
along the i-th row.
(ii) Use induction. [ |

Remarks. Let D be a function defined for each
square matrix of size n. If D(I) = 1, the property
(ii) above is satisfied and

ax

¢-DA)=D| | ca ||,

ay ay ay
D a;+al =D a; +D al
(¢7%) Qap, Qap

Then D(A) = det(A) for all matrices A.

Theorem 8.2 (2.2.3) Let A = (a;;) be a square
matriz of size n. The value of the determinant
changes as follows by elementary row operations.

[i5c]

(a) A= B = det(B) = cdet(A), and |P(i;¢)A| =

|P(i; 0)[|A] = c|Al.

A P B o det(B) = —det(A), and
|P(i, j) Al = [P(i, j)[|A| = —|A].

A " B o det(B) = det(A), and

[P (i, j; ) Al = [P(i, j; ) [|A] = | Al.

In particular, if P is an elementary matriz, |PA| =
[PI|A].

Proof. (a) Straightforward from Proposition 8.1 (i).
(b) We have from the following.
a] ap a;
a; + a; a; a;
0= : = +
a; + a; a; a;
an an an

(¢) We have from the following.

ai a a; ay

a;+c-a; a; ‘a; a;
= . + C =

a; a; a; a;

Qnp Qp, Qp, (079

Theorem 8.3 (2.3.3) A square matriz is invertible
if and only if det(A) # 0.

Proof. If det(A) # 0, then A is invertible. Con-
versely if A is invertible, A can be written as a prod-
uct of elementary matrices. |

Theorem 8.4 (2.3.1) Let A and B be square ma-
trices of size n. Then

det(AB) = det(A) det(B).

Proof.
AB is not invertible.

If A is not invertible, then by Theorem 77,
Hence det(AB) = 0 =

" det(A) det(B) by Theorem 8.3. On the other hand,

if A is invertible by Theorem 7?7, A is a product of
elementary matrices. Let A = PyP--- P;. Now by
consecutive applications of Theorem 8.2,

|AB| = |P\Py---PyB|=|P||P--- PB]
= |Pi[|Py - |P||B| = [P P, - - - || B
= |A]B].
This proves the assertion. [ |

Example 8.1 The following is called the Vander-
monde’s determinant.

1 oz xf - a2t
2 n—1
1 x x5 -
2 n—1 _
1 =g x5 - af = H(“Tl zj)
......... 7;>j
1 oz, 22 ... a0t
n—1 n
= IT @i—=))
j=1i=j+1

9 A Combinatorial Approach
to Determinant

ai ai ai ai ai
/ /
a,+a; |=| a |+| a; |,]| ca; |=c| a; |,

a"ln am am am a'm

a; = [az,l, A2y -, aé,n]

1 =1,2,...,n
Where 7] [/a 7/ 119y , ]
= (051,059 -505

¢ a constant.



Size Two

a1 a12
a1 a2.2
_ a1 0 0 a2
a1 az2 a1 a2
_ a1 0 a1 0
az1 0 0 az2
0 a2 0 ai,2
+
a1 0 0 az232
1 0 0 1
= a1,102;2 0 1 +ai20a21 10

= (+Dai,1a2.2 + (—1)ai,2a2,1.

Size Three: Formula of Sarras

ail ai2 a13
G211 agzz2 23
a31 asz G3;3

1 0 0
= ayiaz2a33| 0 1 0
0 0 1
1 0 0
+ai1a23a32| 0 0 1
0 1 0
01 0
+aipaz1a33| 1 0 0
0 0 1
0 1 0
+a172a273a371 0 0 1
1 0 0
0 01
+a173a271a372 1 0 0
0 1 0
0 0 1
+a1,362203,1 0 1 0
1 0 0

= (4+1)ai1a2,2a33 + (—1)a1, 102,303 2
+(—1)ay 2021033 + (+1)ay 2a2,3a3,1
+(+1)a1 3021032 + (—1)a1 3a2,203,1

= a1,10422033 + a1,202303 1 + G1,302,1032

—a1,102,3032 — 1,202,103 3 — (1,302 203 1-

Example 9.1 By Sarras,

010
6 1 3
0 4 3

= 0-1-3+1-3-840-6-4
~0-1-0—1:6-(=2)—0-3-4
= —18.

Definition 9.1 A permutation of the set of integers
{1,2,...,n} is an arrangement of these integers in

some order without omissions or repetitions. Let .S,
denote the set of all permutations of {1,2,...,n}.
Let o = (i1,12,...,1,) be a permutation. Then the
number of inversions, denoted by ¢(c), is defined by

6(0') = |{(], k) |.7 < ka ij > Zk}|
The signature of o, denoted by sign(o), is defined by
sign(o) = (—1)%@),

A permutation is called even if the total number of
inversions, i.e., £(0) is an even integer, and is called
odd if the total number of inversions is an odd integer.

Theorem 9.1 Let A = (a; ;) be a square matriz of
size n. Then

det(A)

= > sign((i1, 92, . - -, 0n))@1,i, 02,5, = Gni,
(’il,iz,...,’in)esn

=Y ey g,

(i1,82,...,in )ESn

Proof. Let (i1,42,...,in) € Sp and P(i1,42,...,10p)
be a square matrix of size n such that (j,4,) entry is
1 and 0 otherwise. Then

det(A)

= E A1,i1024y " " An iy

(41,82,.++,in )ESn

— Z (71)@((7;17i2¢‘--77;n))a1,i1a27i2 -

(il )i27~">i7L)ES7L

Pi1,i2, .-, in)]

10 Equivalent Conditions

Theorem 10.1 (2.3.6) If A is an nxn matriz, then
the following are equivalent.

(a) A is invertible.
(b
(c
(d

)
) Az = 0 has only the trivial solution, i.e., x = 0.
) The reduced row-echelon form of A is I,,.

) A is expressible as a product of elementary ma-
trices.

—
@
~

Ax = b is consistent for every n X 1 matriz b.

(f) Az = b has ezactly one solution for every n x 1
matrix b.

() det(4) #0.

Exercise 10.1 What are the negations of the condi-
tions above?



