
Linear Algebra II February 20, 2007

Practice Exam 2006/7 (Toal: 140pts)

In the following you may quote the following theorems, but when you use Theorem 1
clarify which item (a) - (d) is applied.

Theorem 1 Let V be an n-dimensional vector space, and S a set of vectors in V .

(a) Suppose S has exactly n vectors. Then S is linearly independent if and only if S
spans V .

(b) If S spans V but not a basis for V , then S can be reduced to a basis for V by
removing appropriate vectors from S.

(c) If S is linearly independent that is not already a basis for V , then S can be enlarged
to a basis of V by inserting appropriate vectors into S.

(d) If W is a subspace of V , then dim(W ) ≤ dim(V ). Moreover if dim(W ) = dim(V ),
then W = V .

Theorem 2 If u and v are vectors in a real inner product space, then

|〈u, v〉| ≤ ∥u∥∥v∥.

Equality holds if and only if u and v are linearly dependent.

1. Prove the following proposition.

Proposition. Let S = {v1, v2, . . . , vr} be a nonempty set of vectors.
Then the following are equivalent.

(a) S is a linearly independent set.

(b) For each vector v, k1v1 + k2v2 + · · · + krvr = v has at most one
solution, i.e., if

k1v1 + k2v2 + · · · + krvr = k′
1v1 + k′

2v2 + · · · + k′
rvr

then k1 = k′
1, k2 = k′

2, . . . , kr = k′
r.

2. Let T : R3 → R3 be a linear transformation and A = [T ] the standard matrix of T
given below. Let N = Ker(T ), C = Im(T ), and let v1, v2,v3 be as follows.

A =

 −1 1 0
10 0 5
0 8 4

 , v1 =

 1
−5
4

 , v2 =

 1
10
16

 , v3 =

 −1
−1
2

 .

(Note that C = R(T ) in the textbook.)

(a) Find a basis of N .

(b) Find a basis of C consisting of column vectors of A.
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(c) Find an orthogonal basis of C with respect to the usual Euclidean inner prod-
uct.

(d) Show that S = {v1,v2, v3} is a basis of R3.

(e) Determine whether or not v3 is in C.

(f) Let B = {e1, e2, e3} be the standard basis of R3. Find [I]S,B, where I : R3 →
R3 (x 7→ x) (the identity operator).

(g) Find [T ]S, the matrix for T with respect to the basis S.

3. Recall the definition of an inner product:

An inner product on a real vector space V is a function that associates
a real number 〈u, v〉 with each pair of vectors u and v in V in such a way
that the following axioms are satisfied for all vectors u, v and z in V and
all scalars k.

(a) 〈u,v〉 = 〈v, u〉 (Symmetry axiom)

(b) 〈u + v, z〉 = 〈u,z〉 + 〈v, z〉 (Additive axiom)

(c) 〈ku,v〉 = k〈u,v〉 (Homogeneity axiom)

(d)

(a) The condition (d) is missing in the definition of an inner product above. State
it.

(b) Give an example of an inner product on a real vector space, which is differ-
ent from the usual Euclidean Inner Product, and show that it satisfies the
conditions above.

(c) In an inner product space V , show

d(u, v) ≤ d(u, w) + d(w,v) for all u, v, w ∈ V.

4. Let V be an n-dimensional vector space, W1 and W2 subspaces of V . Set U =
{w1 + w2 | w1 ∈ W1 and w2 ∈ W2}. (U is often denoted by W1 + W2.)

(a) Show that W = W1 ∩ W2 = {w | w ∈ W1 and w ∈ W2} is a subspace of V .

(b) Show that U is a subspace of V .

(c) Show that there is a set of vectors

S = {w1,w2, . . . , ws, ws+1, ws+2, . . . , ws+t,ws+t+1, ws+t+2, . . . , ws+t+r}

of V satisfying the following conditions.

i. {w1, w2, . . . , ws} is a basis of W = W1 ∩ W2,

ii. {w1, w2, . . . , ws,ws+1,ws+2, . . . , ws+t} is a basis of W1; and

iii. {w1, w2, . . . , ws,ws+t+1, ws+t+2, . . . , ws+t+r} is a basis of W2.

(d) Show that U = Span(S).

(e) Show that S is a basis of U .

Problem 4 proves that dim(W1 + W2) = dim(W1) + dim(W2) − dim(W1 ∩ W2).
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Linear Algebra II February 20, 2007

Solutions to Practice Exam 2006/7
In the following you may quote the following theorems, but when you use Theorem 1

clarify which item (a) - (d) is applied.

Theorem 1 Let V be an n-dimensional vector space, and S a set of vectors in V .

(a) Suppose S has exactly n vectors. Then S is linearly independent if and only if S
spans V .

(b) If S spans V but not a basis for V , then S can be reduced to a basis for V by
removing appropriate vectors from S.

(c) If S is linearly independent that is not already a basis for V , then S can be enlarged
to a basis of V by inserting appropriate vectors into S.

(d) If W is a subspace of V , then dim(W ) ≤ dim(V ). Moreover if dim(W ) = dim(V ),
then W = V .

Theorem 2 If u and v are vectors in a real inner product space, then

|〈u, v〉| ≤ ∥u∥∥v∥.

Equality holds if and only if u and v are linearly dependent.

1. Prove the following proposition.

Proposition. Let S = {v1, v2, . . . , vr} be a nonempty set of vectors.
Then the following are equivalent.

(a) S is a linearly independent set.

(b) For each vector v, k1v1 + k2v2 + · · · + krvr = v has at most one
solution, i.e., if

k1v1 + k2v2 + · · · + krvr = k′
1v1 + k′

2v2 + · · · + k′
rvr

then k1 = k′
1, k2 = k′

2, . . . , kr = k′
r.

Sol. (a)⇒(b): Suppose

k1v1 + k2v2 + · · · + krvr = k′
1v1 + k′

2v2 + · · · + k′
rvr

Then by subtracting the right hand side from the left,

(k1 − k′
1)v1 + (k2 − k′

2)v2 + · · · + (kr − k′
r)vr = 0.

By (a), k1 − k′
1 = k2 − k′

2 = · · · = kr − k′
r = 0. Hence k1 = k′

1, k2 = k′
2, . . . , kr = k′

r.

(b)⇒(a): Suppose
k1v1 + k2v2 + · · · + krvr = 0.

Then
k1v1 + k2v2 + · · · + krvr = 0v1 + 0v2 + · · · + 0vr

as the both hand sides are zero. By (b), k1 = k2 = · · · = kr = 0 and {v1,v2, . . . , vr}
is linearly independent.
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2. Let T : R3 → R3 be a linear transformation and A = [T ] the standard matrix of T
given below. Let N = Ker(T ), C = Im(T ), and let v1, v2,v3 be as follows.

A =

 −1 1 0
10 0 5
0 8 4

 , v1 =

 1
−5
4

 , v2 =

 1
10
16

 , v3 =

 −1
−1
2

 .

(Note that C = R(T ) in the textbook.)

(a) Find a basis of N .

Sol. Since

0 = T (x) = Ax =

 −1 1 0
10 0 5
0 8 4


 x

y
z

 ,

by solving the equation we get [x, y, z]T = t[−1,−1, 2] = tv3. Hence {v3} is a
basis. (Note that a set of one nonzero vector is always linearly independent. In
addition, in this case all solutions above, i.e., the vectors in N can be written
as a scalar multiple of v3, {v3} is a basis. One can choose any other nonzero
scalar multiple of v3 as a basis vector.)

(b) Find a basis of C consisting of column vectors of A.

Sol. By (a) nullity(T ) = 1 and rank(T ) = 3 − nullity(T ) = 2. And Im(T ) =
(̧C)(A). (If A = [a1, a2,a3], then by (a), −a1−a2 +3a3 = 0 and three column
vectors are linearly dependent. So rank(T ) ≤ 2.) Since {a1, a2} is clearly
linearly independent, it forms a basis of Im(T ) = R(T ) = C(A).

(c) Find an orthogonal basis of C with respect to the usual Euclidean inner prod-
uct.

Sol. Since {a1, a2} is a basis of C, {a1,a2 − 〈a2,a1〉
∥a1∥2 a1} is an orthogonal

basis, where

a2 −
〈a2,a1〉
∥a1∥2

a1 =

 1
0
8

 − 1

101

 −1
10
0

 =

 100/101
10/101

8

 .

(d) Show that S = {v1,v2, v3} is a basis of R3.

Sol. Since dim(R3) = 3, it suffices to show that S is linearly independent.
Let B = [v1,v2,v3]. If S is linearly dependent, xv1 + yv2 + zv3 = 0 has a
nonzero solution. Hence Bx = 0 has a nonzero solution. But det(B) = 162 ̸=
0. Hence B is invertible. So x = 0 and S is linearly independent. (One can
show the same by solving the linear equation.)

(e) Determine whether or not v3 is in C.

Sol. This can be shown by showing that the linear equation xa1 + ya2 = v3

is inconsistent, i.e., it does not have a solution. But observe that Av1 = −6v2,
Av2 = 9v2 and Av3 = 0. So −6v1 and 9v2, hence v1,v2 are in C = Im(T ).
Since rank(T ) = 2, it is impossible for C to contain v3, as S is a basis of R3.
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(f) Let B = {e1, e2, e3} be the standard basis of R3. Find [I]S,B, where I : R3 →
R3 (x 7→ x) (the identity operator).

Sol.

[I]S,B = [[e1]S, [e2]S, [e3]S] = B−1 =

 2/9 −1/9 1/18
1/27 1/27 1/27

−20/27 −2/27 5/54

 .

Note that to find [e1]S, we need to express e1 as a linear combination of S.
Hence we need the solution of Bx = e1. So x = B−1e1, which is the first
column of B−1. Similarly [e2]S is the second column of B−1 and [e3]S the
third.

(g) Find [T ]S, the matrix for T with respect to the basis S.

Sol. As we have seen above, Av1 = −6v2, Av2 = 9v2 and Av3 = 0. Hence

[T ]S = [[T (v1)]S, [T (v2)]S, [T (v3)]S] = [[−6v1]S, [9v2]S, [0]S] =

 −6 0 0
0 9 0
0 0 0

 .

3. Recall the definition of an inner product:

An inner product on a real vector space V is a function that associates
a real number 〈u, v〉 with each pair of vectors u and v in V in such a way
that the following axioms are satisfied for all vectors u, v and z in V and
all scalars k.

(a) 〈u,v〉 = 〈v, u〉 (Symmetry axiom)

(b) 〈u + v, z〉 = 〈u, z〉 + 〈v, z〉 (Additive axiom)

(c) 〈ku,v〉 = k〈u,v〉 (Homogeneity axiom)

(d)

(a) The condition (d) is missing in the definition of an inner product above. State
it.

Sol. 〈v, v〉 ≥ 0 and if 〈v,v〉 = 0 if and only if v = 0.

(b) Give an example of an inner product on a real vector space, which is differ-
ent from the usual Euclidean Inner Product, and show that it satisfies the
conditions above.

Sol. In Rn, 〈u,v〉 = 2uT · v is a inner product. (a)-(d) are easily checked.

(c) In an inner product space V , show

d(u, v) ≤ d(u, w) + d(w,v) for all u, v, w ∈ V.

Sol. By definition it is equivalent to the following.

∥u − v∥ ≤ ∥u − w∥ + ∥w − v∥.
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Set a = u − w and b = w − v. Since a + b = u − v, it suffices to show that
∥a + b∥ ≤ ∥a∥ + ∥b∥, or ∥a + b∥2 ≤ (∥a∥ + ∥b∥)2. Now

(∥a∥ + ∥b∥)2 − ∥a + b∥2

= ∥a∥2 + 2∥a∥∥b∥ + ∥b∥2 − 〈a + b, a + b〉
= ∥a∥2 + 2∥a∥∥b∥ + ∥b∥2 − (∥a∥2 + 2〈a, b〉 + ∥b∥2)

= 2(∥a∥∥b∥ − 〈a, b〉) ≥ 0

by Theorem 2. Hence we have shown the inequality.

4. Let V be an n-dimensional vector space, W1 and W2 subspaces of V . Set U =
{w1 + w2 | w1 ∈ W1 and w2 ∈ W2}. (U is often denoted by W1 + W2.)

(a) Show that W = W1 ∩ W2 = {w | w ∈ W1 and w ∈ W2} is a subspace of V .

Sol. Let u, u′ ∈ W1 ∩ W2. Then u,u′ ∈ W1 and u,u′ ∈ W2. Since W1 and
W2 are subspaces, u + u′ ∈ W1, u + u′ ∈ W2. Hence u + u′ ∈ W1 ∩ W2.
Similarly ku ∈ W and ku ∈ W2 for all scalars k. Hence ku ∈ W1 ∩ W2.
Therefore, W1 ∩ W2 is a subspace. (See Theorem 3.2.)

(b) Show that U is a subspace of V .

Sol. Let u,u′ ∈ U . Then there exist w1,w
′
1 ∈ W1 and w2,w

′
2 ∈ W2 such

that u = w1 + w2 and u′ = w′
1 + w′

2. Since w1,w
′
1 ∈ W1 and w2, w

′
2 ∈ W2

and W1 and W2 are subspaces, w1 +w′
1 ∈ W1, w2 +w′

2 ∈ W2. Hence u+u′ =
(w1 + w′

1) + (w2 + w′
2) ∈ U . Similarly ku = kw1 + kw2 ∈ U as kw1 ∈ W1

and kw2 ∈ W2.

(c) Show that there is a set of vectors

S = {w1, w2, . . . , ws, ws+1, ws+2, . . . , ws+t,ws+t+1, ws+t+2, . . . , ws+t+r}

of V satisfying the following conditions.

i. {w1,w2, . . . , ws} is a basis of W = W1 ∩ W2,

ii. {w1,w2, . . . , ws,ws+1,ws+2, . . . , ws+t} is a basis of W1; and

iii. {w1,w2, . . . , ws,ws+t+1, ws+t+2, . . . , ws+t+r} is a basis of W2.

Sol. Since W,W1,W2 are all subspaces of V , these spaces are finite dimen-
sional by Theorem 1 (d), and these have bases. First take a basis {w1,w2, . . . , ws}
of W . (i). Since W ⊂ W1, and {w1,w2, . . . , ws} is linearly independent, it can
be enlarged to a basis of W1 by inserting appropriate vectors ws+1,ws+2, . . . , ws+t

into {w1,w2, . . . , ws}. We applied Theorem 1 (c). Hence (ii). The condition
(iii) is similar by inserting ws+t+1, ws+t+2, . . . , ws+t+r.

(d) Show that U = Span(S).

Sol. Every vector of U is a sum of a vector u1 in W1 and a vector u2 in
W2. Since {w1,w2, . . . , ws, ws+1,ws+2, . . . , ws+t} ⊂ S is a basis of W1, u1

is a linear combination of these vectors and hence it is in Span(S). Similarly
u2 ∈ Span(S). Since Span(S) is a subspace (Theorem 3.4), u1 +u2 ∈ Span(S)
and U ⊂ Span(S). Since S ⊂ U , and U is a subspace, Span(S) ⊂ U . We have
U = Span(S).
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(e) Show that S is a basis of U .

Sol. It suffices to show that S is linearly independent. Suppose

0 = a1w1 + a2w2 + · · · + asws + as+1ws+1 + as+2ws+2

+ · · · + as+tws+t + as+t+1ws+t+1 + as+t+2ws+t+2 + · · · + as+t+rws+t+r.

Consider

a1w1 + a2w2 + · · · + asws + as+1ws+1 + as+2ws+2 + · · · + as+tws+t

= −(as+t+1ws+t+1 + as+t+2ws+t+2 + · · · + as+t+rws+t+r).

Since the left hand side is in W1 and the right hand side is in W2, it is in
W = W1∩W2. So it can be written as a linear combination of {w1,w2, . . . , ws}.
Set

a1w1 + a2w2 + · · · + asws + as+1ws+1 + as+2ws+2 + · · · + as+tws+t

= −(as+t+1ws+t+1 + as+t+2ws+t+2 + · · · + as+t+rws+t+r)

= c1w1 + c2w2 + · · · + csws.

By the uniqueness of expression in W1 proved in Problem 1, by equating the
first line with the third line, we have as+1 = as+2 = · · · = as+t = 0. Now we
have

a1w1 + a2w2 + · · · + asws + as+1ws+1 + as+2ws+2 + · · · + as+tws+t = 0

and a1 = a2 = · · · = as = as+1 = as+2 = · · · = as+t = 0 as
{w1,w2, . . . , ws,ws+1,ws+2, . . . , ws+t} is a basis of W1 and is linearly inde-
pendent.

Problem 4 proves that dim(W1 + W2) = dim(W1) + dim(W2) − dim(W1 ∩ W2).
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