
Take-Home Quiz 1 (Due at 7:00 p.m. on Wed. Dec. 13, 2006)

Division: ID#: Name:

Let u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) be non-zero vectors in Rn.

1. Let λ be a real number. Show the following. (Hint: use ‖w‖2 = w · w.)

‖λu + v‖2 = λ2‖u‖2 + 2(u · v)λ + ‖v‖2.

2. Using the fact that ‖λu+v‖2 ≥ 0 for all real λ and a property of a quadratic function,
show the Cauchy-Schwarz Inequality. (Hint: Discriminant (Hanbetsu-shiki))

3. Show the equivalence of the following:

|u · v| = ‖u‖‖v‖ ⇔ There exists α ∈ R such that u = αv.

Message: (1)この授業を履修した理由 (2)この授業に期待すること [HP掲載不可のとき
は明記のこと]



Solutions to Take-Home Quiz 1 (December 13, 2006)

Let u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) be non-zero vectors in Rn.

1. Let λ be a real number. Show the following. (Hint: use ‖w‖2 = w · w.)

‖λu + v‖2 = λ2‖u‖2 + 2(u · v)λ + ‖v‖2.

Sol.

‖λu + v‖2 = (λu + v) · (λu + v)

= (u · u)λ2 + (u · v)λ + (v · u)λ + (v · v)

= ‖u‖2λ2 + 2(u · v)λ + ‖v‖2.

2. Using the fact that ‖λu+v‖2 ≥ 0 for all real λ and a property of a quadratic function,
show the Cauchy-Schwarz Inequality. (Hint: Discriminant (Hanbetsu-shiki))

Sol. Note that ‖u‖ %= 0 implies that the right hand side above is a polynomial of
degree 2. Since the right hand side of the equation in 1 is quadratic in λ, it can be
considered as a quadratic function which takes only nonnegative values for all real
λ. Hence the graph of the function is above the x-axis or possibly the vertex of the
parabola touches the x-axis. Hence the equation ‖λu + v‖2 = 0 has either no real
solutions or exactly one solution. Therefore the discriminant of it is nonpositive and
we have

(u · v)2 − ‖u‖2‖v‖2 ≤ 0.

Thus we have (u · v)2 ≤ ‖u‖2‖v‖2, or

|u · v| ≤ ‖u‖‖v‖.

This is the Cauchy-Sshwarz Inequality.

Although we assumed that both u and v are nonzero vectors, the Cauchy-Schwarz
Inequality holds even if one of them is a zero vector. So it is easy to check that the
equality holds for all cases.

3. Show the equivalence of the following:

|u · v| = ‖u‖‖v‖ ⇔ There exists α ∈ R such that u = αv.

Sol. If the equality holds, the discriminant is zero. Hence the vertex of the
parabola touches the x-axis. That means there is a value λ such that ‖λu+v‖ = 0.
Hence λu + v = 0. If λ = 0, then v = 0, a contradiction. Hence λ %= 0. Let
α = −(1/λ). Then u = αv as desired.



Take-Home Quiz 2 (Due at 7:00 p.m. on Wed. Dec. 20, 2006)

Division: ID#: Name:

For u = (u1, u2, . . . , un)T be a nonzero vector in Rn, Let

τu : Rn → Rn (x )→ x − 2x · u
‖u‖2

u).

1. Show that τu is a linear transformation.

2. Let v = (1,−1, 0, . . . , 0)T . Find the standard matrix [τv].

3. Suppose T is a linear transformation from Rn to Rn such that T (u) = −u, T (w) =
w whenever w · u = 0. Show that T = τu. (Hint: If α = x·u

‖u‖2 , (x − αu) · u = 0.)

Message 欄：（人それぞれの関わり方がある中で）高校・大学における数学は何のため？
[HP掲載不可は明記のこと]



Solutions to Take-Home Quiz 2 (December 20, 2006)

For u = (u1, u2, . . . , un)T be a nonzero vector in Rn, Let

τu : Rn → Rn (x )→ x − 2x · u
‖u‖2

u).

1. Show that τu is a linear transformation. (This linear transformation is called the
reflection defined by u.)

Sol. Let x,y ∈ Rn and k a scalar. Then

τu(x+y) = (x+y)−2(x + y) · u
‖u‖2

u =
(
x−2x · u

‖u‖2
u

)
+

(
y−2y · u

‖u‖2
u

)
= τu(x)+τu(y)

τu(kx) = kx − 2(kx) · u
‖u‖2

u = k
(
x − 2x · u

‖u‖2
u

)
= kτu(x).

Hence τu is a linear transformation by Theorem 4.3.2 in the textbook.

2. Let v = (1,−1, 0, . . . , 0)T . Find the standard matrix [τv].

Sol. Let e1 = (1, 0, . . . , 0)T , e2 = (0, 1, 0, . . . , 0)T , . . . , en = (0, . . . , 0, 1)T be unit
vectors. Since ‖v‖2 = 2, τv(e1) = (0, 1, 0, . . . , 0)T , τv(e2) = (1, 0, . . . , 0)T , and
τv(ei) = ei if i = 3, 4, . . . , n. We have

[τv] = [τv(e1), τv(e2), τv(e3), . . . , τv(en)] =





0 1 0 0 · · · 0
1 0 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 0
...

...
...

. . .
...

0 0 0 0 · · · 1





.

by Theorem 4.3.3.

3. Suppose T is a linear transformation from Rn to Rn such that T (u) = −u, T (w) =
w whenever w · u = 0. Show that T = τu. (Hint: If α = x·u

‖u‖2 , (x − αu) · u = 0.)

Sol. Since both T and τu are linear transformation from Rn to Rn. It remains to
show that T (x) = τu(x) for all x ∈ Rn. Since

(∗) (x − x · u
‖u‖2

u) · u = 0 and (∗∗) x · u
‖u‖2

is a scalar,

T (x) = T ((x − x · u
‖u‖2

u) +
x · u
‖u‖2

u)

= T (x − x · u
‖u‖2

u) +
x · u
‖u‖2

T (u) (by Theorem 4.3.2 (a) and (b) with (**))

=
(
x − x · u

‖u‖2
u

)
− x · u

‖u‖2
u (by the properties of T and (*) above)

= x − 2x · u
‖u‖2

u

= τu(x).

Therefore T = τu as functions (or mappings).



Take-Home Quiz 3 (Due at 7:00 p.m. on Wed. January 10, 2007)

Division: ID#: Name:

1. Let V be a vector space and k a scalar. Show k0 = 0. In each step of your proof
quote the axiom applied. [Hint: Exercise 5.1.29]

2. Let A, v1, v2,v3 be as follows.

A =




1 −2 3
−3 7 −8
−2 4 −6



 , I =




1 0 0
0 1 0
0 0 1



 , v1 =




1
−3
−2



 , v2 =




−2
7
4



 , v3 =




3
−8
−6



 .

(a) Let B = (A − I)2. Show that W = {v ∈ R3 | Bv = 10v} is a subspace of
V = R3.

(b) Determine whether or not v3 is a linear combination of v1 and v2.

Message 欄：今年の抱負、将来の夢。[HP掲載不可は明記のこと]



Solutions to Take-Home Quiz 3 (January 10, 2007)

1. Let V be a vector space and k a scalar. Show k0 = 0. In each step of your proof
quote the axiom applied. [Hint: Exercise 5.1.29]

Sol.

k0
(4)
= k0 + 0

(5)
= k0 + (k0 + (−(k0))

(3)
= (k0 + k0) + (−(k0))

(7)
= k(0 + 0) + (−(k0))

(4)
= k0 + (−(k0))

(5)
= 0.

Therefore k0 = 0

We write u−v for u + (−v). Note that since k0 is an element in a vector space V ,
−(k0) above is an element guaranteed to exist by Axiom 5.

2. Let A, v1, v2,v3 be as follows.

A =




1 −2 3
−3 7 −8
−2 4 −6



 , I =




1 0 0
0 1 0
0 0 1



 , v1 =




1
−3
−2



 , v2 =




−2
7
4



 , v3 =




3
−8
−6



 .

(a) Let B = (A − I)2. Show that W = {v ∈ R3 | Bv = 10v} is a subspace of
V = R3.

Sol. Since W = {v ∈ R3 | (B − 10I)v = 0}, W is the kernel of the linear
transformation defined by a 3 × 3 matrix B − 10I. Hence W is a subspace of
V by Proposition 3.3 (5.2.2).

Alternatively apply Theorem 3.2 (5.2.1). Since 0 safisfies B0 = 0 = 100,
0 ∈ W . Hence W is not empty. Let u,v ∈ W , i.e., Bu = 10u and Bv = 10v.
Let w = u + v. Then

Bw = B(u + v) = Bu + Bv = 10u + 10v = 10(u + v) = 10w.

Hence u + v = w ∈ W . Similarly if k is a scalar

B(ku) = k(Bu) = k(10u) = 10(ku).

Hence ku ∈ W . Thus W is a subspace of V by Theorem 3.2 (5.2.1) and W
itself is a vector space.

(b) Determine whether or not v3 is a linear combination of v1 and v2.

Sol. Since v3 = 5v1 + v2, v3 can be written as a linear combination of v1

and v2.

Let v3 = xv1 + yv2. Then the augmented (or extended coefficient) matrix
of this system of linear equations is A. Hence by applying elementary row
operations we have




1 −2 3
−3 7 −8
−2 4 −6



 →




1 −2 3
0 1 1
0 0 0



 →




1 0 5
0 1 1
0 0 0



 .

Now we have the linear combination above.



Take-Home Quiz 4 (Due at 7:00 p.m. on Wed. January 17, 2007)

Division: ID#: Name:

Let v1,v2, v3, e1, e2 and e3 be vectors in R3 given below.

v1 =




1
−3
−2



 , v2 =




−2
7
4



 , v3 =




3
−8
−6



 , e1 =




1
0
0



 , e2 =




0
1
0



 , e3 =




0
0
1



 .

1. Show that {v1,v2} is a basis of U = Span{v1,v2, v3}.

2. Show that {e1, e2, e3} is a basis of R3.

3. Show that e1 %∈ Span{v1, v2}.

4. Show that {e1,v1, v2} is a basis of R3.

5. Express e2 as a linear combination of e1, v1, v2.

Message 欄：あなたにとって、豊かな生活とはどのようなものでしょうか。どのよう
なとき幸せだと感じますか。[HP掲載不可は明記のこと]



Solutions to Take-Home Quiz 4 (January 17, 2007)

Let v1,v2, v3, e1, e2 and e3 be vectors in R3 given below.

v1 =




1
−3
−2



 , v2 =




−2
7
4



 , v3 =




3
−8
−6



 , e1 =




1
0
0



 , e2 =




0
1
0



 , e3 =




0
0
1



 .

N.B. A subspace of a vector space is a vector space. A subset S = {u1,u2, . . . , ur}
of a vector space V is a basis of V , whenever two conditions are satisfied, i.e., ‘(a) linear
independence’ and ‘(b) V = Span(S)’. Review the definition of a basis.

1. Show that {v1,v2} is a basis of U = Span{v1,v2, v3}.
Sol. Note that v3 = 5v1 + v2. (See Quiz 3.) Hence

U = Span{v1, v2,v3} = {a1v1 + a2v2 + a3v3 | a1, a2, a3 ∈ R} = Span{v1,v2}.

By definition, it suffices to show that {v1,v2} is a linearly independent set. Suppose

0 = xv1 + yv2 = x




1
−3
−2



 + y




−2
7
4



 =




x − 2y

−3x + 7y
−2x + 4y



 .

Since x − 2y = 0 and −3x + 7y = 0 implies x = y = 0, {v1,v2} is a linearly
independent set and it is a basis of U .

2. Show that {e1, e2, e3} is a basis of R3.

Sol. Suppose 0 = xe1 + ye2 + ze3 = (x, y, z)T . Then x = y = z = 0. Hence
{e1, e2, e3} is linearly independent. Moreover (x, y, z)T = xe1 + ye2 + ze3 for all
x, y, z ∈ R, and R3 = Span{e1, e2, e3}. Hence {e1, e2, e3} is a basis of R3.

3. Show that e1 %∈ Span{v1, v2}.
Sol. By the computation in 1, the third entry of xv1 + yv2 is −2 times the first
entry. Hence e1 is not in U = Span{v1, v2}.

4. Show that {e1,v1, v2} is a basis of R3.

Sol. By 3, {v1,v2, e1} is a linearly independent set in R3. (See Proposition 4.7
(5.4.4).) Since dim(R3) = 3 by 2. {v1,v2, e1} is a basis of R3 by Theorem 4.8
(5.4.5).

5. Express e2 as a linear combination of e1, v1, v2.

Sol. e2 = 0e1 + 2v1 + v2 = 2v1 + v2.



Take-Home Quiz 5 (Due at 7:00 p.m. on Wed. January 24, 2007)

Division: ID#: Name:

Let A be the coefficient matrix, and B the augmented matrix of a system of linear
equations Ax = b, where x = [x1, x2, x3, x4, x5, x6]T . Let C be a reduced row-echelon
form obtained from B by a series of elementary row operations.

B = [A, b] =





3 −3 0 3 −6 −3 −6

2 −2 1 5 −3 −1 1

−3 3 0 −3 6 1 −8

−1 1 2 5 4 0 −9




→ C =





1 −1 0 1 −2 0 5

0 0 1 3 1 0 −2

0 0 0 0 0 1 7

0 0 0 0 0 0 0





1. Find rank(A) and nullity(A).

2. Find a basis of the row space of A.

3. Find a basis of the column space of A.

4. Find a basis of the nullspace of A.

5. Find the general solution of the equation Ax = b.

Message 欄：これまでの Linear Algebra II について。改善点について。[HP掲載不可は
明記のこと]



Solutions to Take-Home Quiz 5 (January 24, 2007)

Let A be the coefficient matrix, and B the augmented matrix of a system of linear
equations Ax = b, where x = [x1, x2, x3, x4, x5, x6]T . Let C be a reduced row-echelon
form obtained from B by a series of elementary row operations.

B = [A, b] =





3 −3 0 3 −6 −3 −6

2 −2 1 5 −3 −1 1

−3 3 0 −3 6 1 −8

−1 1 2 5 4 0 −9




→ C =





1 −1 0 1 −2 0 5

0 0 1 3 1 0 −2

0 0 0 0 0 1 7

0 0 0 0 0 0 0





In the following, let C = [D, e], where e = [5,−2, 7, 0]T . Then there is an invertible
matrix P of size 4× 4 such that PB = C and PA = D, Pb = e. For a matrix M , let Mi

denote column i of M .

1. Find rank(A) and nullity(A).

Sol. Let {e1, e2, e3, e4} be the standard basis of R4. Then D1 = e1, D3 = e2 and
D6 = e3. Hence

rank(A) = dim(C(A)) = dim(C(PA)) = dim(C(D)) = dim Span{e1, e2, e3} = 3.

Since N (A) = N (PA) = N (D), nullity(A) = nullity(PA) = nullity(D) = 3. See
Problem 4, or use Theorem 5.6 (5.6.3).

2. Find a basis of the row space of A.

Sol. Since R(A) = R(D) by Proposition 5.2 (5.5.4), it suffices to find a basis of
the row space of D. Let S = {[1,−1, 0, 1,−2, 0], [0, 0, 1, 3, 1, 0], [0, 0, 0, 0, 1]}. Then
clearly Span(S) = R(D), and S is a linearly independent set. Hence S is a basis.

3. Find a basis of the column space of A.

Sol. Since PA1 = D1 = e1, PA3 = D3 = e2 and PA6 = D6 = e3 form a basis of
C(D), {A1, A3, A6} is a linearly independent set by Proposition 5.3 (5.5.5). Since
rank(A) = dim(C(A)) = 3, {A1, A3, A6} is a basis of the column space of A.

4. Find a basis of the nullspace of A.

Sol. Since N (A) = N (PA) = N (D) and {[1, 1, 0, 0, 0, 0], [−1, 0,−3, 1, 0, 0],
[2, 0,−1, 0, 1, 0]} is a linearly independent set, this is a basis.

5. Find the general solution of the equation Ax = b.

Sol.




5
0
−2
0
0
7





+ s





1
1
0
0
0
0





+ t





−1
0
−3
1
0
0





+ u





2
0
−1
0
1
0





. (s, t, u are parameters.)



Take-Home Quiz 6 (Due at 7:00 p.m. on Wed. January 31, 2007)

Division: ID#: Name:

Let A be an m × n matrix. For u,v ∈ Rn let

〈u,v〉 = Au · Av = (Au)T Av = uT AT Av.

1. Show that 〈u, v〉 satisfies the properties (a), (b) and (c) of an inner product in
Definition 6.1 (or 1, 2, 3 in the definition on page 296 in the textbook).

2. Show that if N (A) = {v ∈ Rn | Av = 0} = {0}, then 〈u,v〉 is an inner product.

3. Show that if m < n, then 〈u,v〉 is not an inner product.

4. Show that m ≥ n, if AT A is invertible.

Message 欄：数学（または他の科目）など何かを学んでいて感激したことについて。[HP
掲載不可は明記のこと]



Solutions to Take-Home Quiz 6 (January 31, 2007)

Let A be an m × n matrix. For u,v ∈ Rn let

〈u,v〉 = Au · Av = (Au)T Av = uT AT Av.

1. Show that 〈u, v〉 satisfies the properties (a), (b) and (c) of an inner product in
Definition 6.1 (or 1, 2, 3 in the definition on page 296 in the textbook).

Sol. First note that (a), (b), and (c) hold for u ·v in Rm. Note that if u, v ∈ Rn,
then Au, Av ∈ Rm. See Theorem 1.2 (4.1.2). For if x = [x1, x2, . . . , xm]T and
y = [y1, y2, . . . , ym]T , (a) x · y = x1y1 + x2y2 + · · ·+ xmym = y ·x, (b) (x + y) · z =
x · z + y · z, (c) (kx) · y = k(x · y). Moreover x ·x ≥ 0 and x ·x = 0 if and only if
x = 0.

(a) 〈u,v〉 = (Au) · (Av) = (Av) · (Au) = 〈v,u〉.
(b) 〈u + v, z〉 = (A(u + v)) · (Az) = (Au) · (Az) + (Av) · (Az) = 〈u,z〉 + 〈v, z〉.
(c) 〈ku, v〉 = (Aku) · (Av) = k((Au) · (Av)) = k〈u, v〉.

2. Show that if N (A) = {v ∈ Rn | Av = 0} = {0}, then 〈u,v〉 is an inner product.

Sol. It suffices to show the condition (d). Clearly, 〈u, u〉 = (Au) · (Au) ≥ 0.
If Au = [w1, w2, . . . , wn]T , then (Au) · (Au) = 0 if and only if Au = 0 if and
only if u ∈ N (A). Hence if the condition above is satisfied, then u = 0. Thus
〈u,u〉 = (Au) ·(Au) = 0 implies u = 0 and 〈u,v〉 safisfies all conditions of an inner
product in Definition 6.1.

3. Show that if m < n, then 〈u,v〉 is not an inner product.

Sol. If m < n, then by Theorem 4.3 (5.3.3), the system of linear equation Ax = 0
has a nonzero solution u. Then 〈u,u〉 = Au · Au = 0 while u %= 0. Thus 〈u, v〉
does not satisfy (d) and it is not an inner product.

4. Show that m ≥ n, if AT A is invertible.

Sol. Suppose m < n. Then there exists a nonzero vector u ∈ Rn such that Au = 0
by Theorem 4.3 (5.3.3). Then AT Au = AT0 = 0. Since AT A is invertible, u = 0,
a contradiction. Hence m ≥ n.

N.B. Two kinds of zero 0 and 0 are used above. But actually there are three. Some
of 0 are 0n ∈ Rn and the others are 0m ∈ Rm. Can you identify them?



Take-Home Quiz 7 (Due at 7:00 p.m. on Wed. February 7, 2007)

Division: ID#: Name:

Let v1,v2, v3, e1, e2 and e3 be vectors in R3 given below.

v1 =




1
−3
−2



 , v2 =




−2
7
4



 , v3 =




3
−8
−6



 , e1 =




1
0
0



 , e2 =




0
1
0



 , e3 =




0
0
1



 .

For u,v ∈ R3, let 〈u,v〉 = u · v = uT v be the inner product and U = Span{v1,v2,v3}.
You may quote the facts shown in previous quizzes.

1. Compute v2 − 〈v2,v1〉
‖v1‖2 v1.

2. Find an orthonormal basis of U .

3. Find an orthonormal basis of R3 containing the basis constructed in 2.

4. Find a basis of U⊥.

5. Express each of e1, e2, e3 as a linear combination of the orthonormal basis con-
structed in 3.

Message 欄：ICU をどのようにして知りましたか。選んだ理由。ICU の入試につい
て。[HP掲載不可は明記のこと]



Solutions to Take-Home Quiz 7 (February 6, 2007)

1. Compute v2 − 〈v2,v1〉
‖v1‖2 v1.

Sol. 〈v2,v1〉 = −2 − 21 − 8 = −31, ‖v1‖2 = 〈v1,v1〉 = 1 + 9 + 4 = 14. Hence

u′
2 = v2 −

〈v2,v1〉
‖v1‖2

v1 =




−2
7
4



 − −31

14




1
−3
−2



 =
1

14




3
5
−6



 .

2. Find an orthonormal basis of U .

Sol. Since {v1, u′
2} is an orthogonal basis and ‖v1‖2 = 14,

‖u′
2‖2 =

〈
1

14




3
5
−6



 ,
1

14




3
5
−6





〉

=
1

142
(9 + 25 + 36) =

5

14
,

{u1,u2} is an orthonormal basis where

u1 =
v1

‖v1‖
=

1√
14




1
−3
−2



 , and u2 =
u′

2

‖u′
2‖

=
1√
70




3
5
−6



 .

3. Find an orthonormal basis of R3 containing the basis constructed in 2.

Sol. By Quiz 4-4, we have shown that {v1, v2, e1} is a basis of R3. Hence we can
proceed the Gram-Schmidt process one step further to find an orthonomal basis as
follows.

u′
3 =




1
0
0



 − 1

14




1
−3
−2



 − 3

70




3
5
−6



 =
1

5




4
0
2



 , u3 =
u′

3

‖u′
3‖

=
1√
5




2
0
1



 .

Note that Span{u3} = U⊥ = N (A). See Quiz 5.

4. Find a basis of U⊥.

Sol. dim U⊥ = dim R3−dim U = 3−2 = 1. Since u3 ∈ U⊥ as U = Span{v1,v2} =
Span{u1,u2} (see Quiz 4), {u3} is a basis of U⊥. Since just a basis is required (not
an orhonormal basis), (2, 0, 1)T is also OK.

5. Express each of e1, e2, e3 as a linear combination of the orthonormal basis con-
structed in 3.

Sol. This is straightforward by a formula in Proposition 7.1.

e1 =
1√
14

u1+
3√
70

u2+
2√
5
u3, e2 =

−3√
14

u1+
5√
70

u2, e3 =
−2√
14

u1−
6√
70

u2+
1√
5
u3.



Take-Home Quiz 8 (Due at 7:00 p.m. on Wed. February 14, 2007)

Division: ID#: Name:

Let v1,v2, v3 and u be vectors in R3 given below.

v1 =




1
−3
−2



 , v2 =




−2
7
4



 , v3 =




3
−8
−6



 , u =




2
0
1



 .

For u,v ∈ R3, let 〈u,v〉 = u · v = uT v be the inner product, U = Span{v1,v2,v3}, and
T = projU . You may quote the facts shown in previous quizzes.

1. Show that T (v1) = v1, T (v2) = v2, T (v3) = v3 and T (u) = 0.

2. Show that T is a linear transformation using the definition of linear transformations.

3. Show that T ◦ T = T .

4. Find Ker(T ), nullity(T ), Im(T ) and rank(T ).

5. Show that there is no linear transformation T ′ : U → U such that T ′(v1) = v2,
T ′(v2) = v3 and T ′(v3) = v1.

Message 欄（何でもどうぞ）：ICU をより魅力的にするにはどうしたらよいでしょう
か。また ICU の数学教育について提言があれば。[HP掲載不可は明記のこと]



Solutions to Take-Home Quiz 8 (February 14, 2007)

Let v1,v2, v3 and u be vectors in R3 given below.

v1 =




1
−3
−2



 , v2 =




−2
7
4



 , v3 =




3
−8
−6



 , u1 =
1√
14




1
−3
−2



 , u2 =
1√
70




3
5
−6



 ,u =




2
0
1



 .

For u,v ∈ R3, let 〈u,v〉 = u ·v = uT v be the inner product, U = Span{v1, v2,v3}, and
T = projU . You may quote the facts shown in previous quizzes.

Recall that {u1, u2} is an orthonormal basis of U , and {u} is a basis of U⊥. Hence

projU(v) = 〈v, u1〉u1 + 〈v,u2〉u2. · · · (∗)
1. Show that T (v1) = v1, T (v2) = v2, T (v3) = v3 and T (u) = 0.

Sol. Using (*), the assertions are easily checked.

Sol. 2. By Proposition 7.1 (b), projU(v) = v for all v ∈ U . Since v1,v2,v3 ∈ U .
projU(v1) = v1, projU(v2) = v2, projU(v3) = v3. Since u ∈ U⊥, u is perpendicular
to all basis vectors of U . Hence projU(u) = 0.

2. Show that T is a linear transformation using the definition of linear transformations.

Sol. Let w1,w2 ∈ R3 and k a scalar. Then

T (w1 + w2) = projU(w1 + w2) = 〈w1 + w2,u1〉u1 + 〈w1 + w2, u2〉u2

= 〈w1, u1〉u1 + 〈w1,u2〉u2 + 〈w2,u1〉u1 + 〈w2, u2〉u2

= projU(w1) + projU(w2) = T (w1) + T (w2).

T (kw1) = 〈kw1, u1〉u1 + 〈kw1, u2〉u2 = k〈w1,u1〉u1 + k〈w1,u2〉u2

= kprojU(w1) = kT (w1).

Sol. 2. By Theorem 7.3 (e), every vector v ∈ R3 is expressed as a sum v =
w1 +w2 such that w1 ∈ U and w2 ∈ U⊥. Clearly w1 = projU(v). Let v′ = w′

1 +w′
2

such that w′
1 ∈ U and w′

2 ∈ U⊥. Then w1 + w′
1 ∈ U and w2 + w′

2 ∈ U⊥. Hence
projU(v +v′) = w1 +w′

1 = projU(v)+projU(v′). Similarly projU(kv) = kprojU(v).

3. Show that T ◦ T = T .

Sol. Let v ∈ R3. Since T (v) = projU(v) ∈ U , T (T (v)) = T (v). Thus T ◦ T = T .

4. Find Ker(T ), nullity(T ), Im(T ) and rank(T ).

Sol. By definition or the previous problem, Im(T ) = U and Ker(T ) = U⊥. Hence
nullity(T ) = 1 and rank(T ) = 2 as dim U⊥ = 1 and dim U = 2.

5. Show that there is no linear transformation T ′ : U → U such that T ′(v1) = v2,
T ′(v2) = v3 and T ′(v3) = v1.

Sol. Recall that v3 = 5v1 + v2. Hence

[1,−3,−2]T = v1 = T ′(v3) = T ′(5v1 + v2) = 5v2 + v3 = [−7, 27, 14]T .

A contradiction. Compare with Proposition 8.3.


