1 Sets and Logic

Set (888) : A set is a finite or infinite collection of objects.

The most important requirement when describing a set is that the description makes it clear pre-
cisely which elements belong to the set.

YD) ODEFED, EARDBDEDLSTETHL IV, ZNNZDEFHDOHIZH 200003 ->
EDEEEFSTVE LI RBDTRINTERS K,

Element (Jt. E3) : The objects that make up the set are called its elements (or members). When
a is an element of a set A, we write: a € A or A 3 a, otherwise. a ¢ Aor AZa
1. A={2,3,5,7}
2. A={x |z is a prime at most 10} = {z | z 13 10 L T DFEH }.
Subset (EB53E®R) : When all elements of a set A belong to a set B, A is said to be a subset of B, and

write:
ACcBorBDA

Fr AL BIZBWTADTRTOILA, BOILTHLLE, Al BOHIEATHLLEVACB
72013, Bo A EL,

Equality of Sets (88 M%) : A= Bifandonlyif AC B and B C A.
TODEA A, BIZBWT, ACB?»DO BCADEDUDOK AL BIRIMHETHLLEFS W A=8
= X

Empty Set (Z&ES) : The set with no elements is called the empty set and denoted by .
TR BERVEAZEES L VL ) TET,

1. {y | y is a student in this class of age 100 or above} = 0.
2. {x | x is a real number such that z2—2x+3 < 0} = (. Note that 2°>—22+3 = (z—1)?+2 > 0.
Intersection (#i#&B4}) : The intersection of two sets A and B is the set that contains all elements
of A that also belong to B, and is denoted by A N B.
TODHEAE A, BIZBWT, AL BoWigiciblktehkofsit A L B LOMERTE v
ANB &EL, miilszMw5 L

ANB={z|(z€A) AN (zxeB)}={z|xz€ Az € B}

Union (f1%E&) : The union of two sets A and B is the set that contains all (distinct) elements in the
collection, and is denoted by AU B.

TODEAR A BIZBWT, ADJLE B DILE A EHEFCEDTHONLELGE A L B LORE
HEww AuB EEL, wmES 2 w5 &

AUB={xz|(z€ A)V (xz € B)}.

Difference (Z&®S) : The difference between two sets A and B is the set that contains all elements
of A that are not elements of B, and is denoted by A\ B or A — B.

TODEE A BIZEWT, ADILT B DILTIERWILEROESE A L B LOEERLE VL,
A\B $7:13 A— B £ #HL, wdlEd 525 &

A\B=A{z[(xecAhA-(reB)}={z|(zc YA (z¢B)} ={z|(xcA),(z¢B)}.

Complement (#%ES): A universal set is a set which contains all objects, and U or ) is often used.
When a universal set, say U, is given, the complement of A is U \ A, and is denoted by A° or A.

ERES (U £72013 Q BRAfEDNDS) 2 —DED R Z DETHEES AL, A ICEEN R
FeEz A FF ATRL, ADHIRALE D).
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Statement, Proposition (f3) : A statement is a declarative sentence that is true or false (but not
both).

ELWVLRIEL K W0 sHAfEIC XA TE 2 e mE & \» I,

Truth Value (E¥f#) : Every statement has a truth value, namely true (denoted by T' (or “17)), or
false (denoted by F (or “0”).)
MEPETH LI L% T (or “17)), BTHEIL%EZ TF (or “07)y TERT, INzaEOEMHE L
Vv,

Negation, logical-and (conjunction), logical-or (disjunction), implication
BE - wEH - REM - 25):

—-p (or ~por por NOT p), pAq (or p-qor p&q or p AND q), pV q (or p+ q or plqg or p OR q),
p=q (or pkqor p— qorp IMPLIES gq).

p|™p
T| F
F| T

oo N>
NN

RSeS| S
NN

| N

Logically Equivalent (GRIE[RIfE): Whenever two (compound) statements have the same truth values
for all combinations of truth values of their component statements, then we say that X and Y are
logically equivalent and write: X =Y, otherwise X ZY.

il % DEEOEIEIC» 20 5T ODfEAME X £ Y (D -, v, A, = & ETHIENZR)
OEMENRFE L WE &, 20 o0MEldintREE (F213%E) Tt X =Y LFEL, 2
ITHEWVWEE, X 2Y E#EL,

Propositional Logic and Predicative Logic (fnEimiE & iREERIE) - Propositional logic is the logic
the includes sentence letters (p, ¢, r) and logical connectives =, A, V, =, but not quantifiers.

Predicate logic has the same connectives as propositional logic, but it also has variables for individual
objects, quantifiers, such as Vo € A, dx € A.

AEERELZ, p, g, r B ED, WMEAGHEE -, AV, = BETHAIELLDEHOH ),

REEmAEIE, ZUTMA T, ZEZ2E0WET, IRXRTDrxc A s c ADHET IR EDRYZ &
b9,

Universal Proposition (£fid8) : A proposition asserting something of all things meeting some
condition.

In predicate logic, universal quantification formalizes the notion that something (a logical predicate)
is true for everything. The resulting statement is a universally quantified statement, and we have
universally quantified over the predicate. In symbolic logic, the universal quantifier (typically , V)
is the symbol used to denote universal quantification, and is often informally read as“given any” or
“for all”.

WEERFRICBWT EED (TXRTD) 2 20 Than#E p(z) 23D 322 (For all z, the proposition
p(x) holds.); Z2&WfrdEH & VW Ve p(x) £7213 (Va)[p(x)] £F L,

Existential Proposition (F#Ef#E) : An existential proposition (or statement) is one affirming the
existence of some thing meeting some condition.

In predicate logic, an existential quantification is the predication of a property or relation to at
least one member of the domain. It is denoted by the logical operator symbol 3 (pronounced “there
exists” or “for some”), which is called the existential quantifier.

WFERIRICE VT Th 5 2 1220 T p(z) 23K D 32D (There exists x such that p(z) holds.)s %
R L VW Frp(z) £7203 (F2)[p(x)] EF L,

=((Vz)[p(2)]) = (F2)[-p(z)], and =((Fz)[p(z)]) = (Va)[-p(z)].  (De Morgan’s Laws)
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Problems (Find problems of logic in Final Examinations, and Quiz 1 in the World of Mathematics.)
1. Check the following formula by using truth tables. DA OBl 255uBLHE (5E) THDH L%
HIELZ W CED O X,
(a) pVp=p,pAp=p, ~(-p) =p.
(b) pVa=qVp,pAg=qAp.
() (pva)Vr=pV(gVr), pAgAr=pA(qAT).
d) pvigrr) =@V ApVr),pAgVr)=@AgV(pAT).
(€) =(pAg)=(=p)V(=q), ~(pVq) = (=p) A (—q). (De Morgan’s Laws)
() p=a=(p) Ve
2. Show the following using 1 (a)-(f) above. XDimERFIfEMEZ 1 (a)-(f) 2 VTR,
p=q=(=(=q)V(=p) = ~q¢=—p=-(pA(=9)
3. Show that the following does not hold by giving an example.
(pAg)Vr=pA(qVr)
LOAXDBHZL w2 E2R L, AL L2k ) dn@ p, ¢, r DB ZHIT X,
4. Show p = (¢ Vr) = pA(—q) = r and conjugate the following using this formula. p = (¢ VvV r) =
pA(mq)=r THHIEZRL, 22T, ROAZHFHENZ X,
2(r—1)=0=(x=0)V(z=1).

5. AY2005 Mathematical Methods in Science, Quiz 1:

(y

(a) Let p, q, r be statements. Check the following using the truth table. p, ¢, r Zfi & T 5,
DL E RORDID T2 E b, LIHFIC > THER X, Bl b i,
(pVg)=r=p@=r)A(g=r).
(b) Express the following using only — and V. Don’t use = and A. (p=7)A(¢=7r) &2 - & V
EFEIZZTZHWTERE, Znsid, MEESTORVY, = & A BfibknI L,
(¢) Let X be a compound statement having truth value T exactly when (p, q,r) is (T, F,T), (F, T, F),
and (F, F, F). Fill =, A or V in the underlined blanks below.
X = (((p)—(q@) —(r) Vv
((—p) — (=) A (7)) —
(—p) AN (—a) — (1)
6. AY2007 Mathematical Methods in Science, Quiz 1:
(a) Let p, ¢, r be statements. Check the following using the truth table. Give an explanation by
stating the meaning of ‘=".
p=(qVvr)=(=Anr) =q
(b) For statements p and ¢, p | ¢ is a statement having the following truth values.
i. Complete the truth table of p | p.

|

|

qplalplp]
T F
Fl F
T
F

F
T

B3] ] s as S

ii. Write a compound statement logically equivalent to p | ¢ using only — and V without
using A or =-.
iii. Write a compound statement logically equivalent to p V ¢ using only |.
7. AY2007 Mathematical Methods in Science, Final Examination:

Complete the truth tables of p = (=(¢V r)) and ~((p A q) V (p A 7)), and check whether these are
logically equivalent.
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2 System of Linear Equations

Matrices (1T51)

Definition 2.1 A matriz (or an m X n matriz) is an m x n rectangular array of numbers. B is a 3 x 4
matrix, C' a 3 X 3 matrix, and b a 3 X 1 matrix.

aii a2 A1n 3 -3 _2 16 3 -3 -2 16
A— | O ?2.2 ...... G2n ,B=|] -3 8 8 25|, C=|-3 8 8 |.,b=]| —25
1 -2 -2 7 1 -2 -2 7
Am1  Am2 s OQmn

LD A DRRIZ mx n HOBEEST GEK) 172 mxn 75, XE, (m,n) {519, BELT,
A=lay] BEEHLZLELH B, Blx3x44751 . C 13 3 x 34750, b iF 3 x 11771,

Linear Systems and Augmented Matrices (EII—RFER &ILKFRETTIHI)

Definition 2.2 A finite set of linear equations in variables x1,xo,...,z, is called a system of linear
equations or a linear system, where x1, o, ..., T, are the unknowns. A solution (fi#) of the system is a
list (s1,82,...,5,) of numbers that makes each equation a true statement when the values si,s9, ..., s,
are substituted (fRAT3) for 1, x9,...,2n, respectively. The set of all solutions of the system is called
its solution set or the general solution (—#%fi#) of the system. Two linear systems are equivalent ([FlfE)
if they have the same solution set. A system of equations that has no solutions is said to be inconsistent
(72 L « ANBE) ; if there is at least one solution of the system, it is called consistent (fEBTFLET 3) .
The matrix A above is called the augmented matriz (JERFREATF) of the system, and C the coefficient
matriz.

a1171 +a12T2 + -+ a1Tn = by
(21%1 + G22%2 + - - + AopnTy, = by
......... ?

Cm1T1 + Qa2+ + Amn®n = by

a1 ai2 -t Q1n b1 ail Q12 - Qln
a21 age - G2 bo a21 a2 -+ G2

A= " , O= "
am1 Am?2 o Omn bm Am1 Am2 . Amn

TR x1,29,..., 0, ZERETZ 1R BB 1 FELEERLZTEEGEL) HEAOME ©1,20,...,2, %
REFE T 58— () AEAE VY, ZOET-XRHFBERICEBCT, TO A ZIEXKEET &
W, C ZREITIE V), 21,20, 2, IWRAL TESVRLT 2EDOM 51, 50,...,8, ZBREWVW, ZD
RTRTCERLEDDZ—REE, ZOEAZHER L), BEADF UM —RAREAZ REZ XK
HFERXE WS, B HTbH 2L EIE, BPFETLIEV O, ~HLMOEEZMER L EFIEREENT,

Fundamental Questions About a Linear System (GEIZ—RXAEXICEATZEFRNLRHRE)
1. Is the system consistent? fRIZFETET 5 D>,
2. If a solution exists, is it the only one? Is the solution unique? MHFET % & &, ZiUIME—DD,

3. If more than one solution exist, how can we describe the solution set?

fRS—DTRRVETH L, IRIZEDXIITRT I ENTE S0,

Example 2.1
r — 3y = 2 1 -3 2 1 -3
r + 2y = 12 1 2 12 |’ 1 2 |
r — 3y = 2 x — 3Jy = 2 x = 8
5y = 10~ y = 2 y = 2
Example 2.2
z1 + 02y + 3 + 024 + x5 + 326 = -1 x1 + 0z + 23 + 04 + 5 + 326 = -1
—x1+0xy — 23+ 02y +0x5 —42¢ = -1 —x1+ 029 — 23+ 024 + 05 —42¢ = -1
0x1 + 29 — 223 + 324 + Ox5 — 26 = 3 7 0z1 + 29 — 223 + 324 + 025 — 26 = 3
—2x1 — 2x9 + 2x3 — 64 — 225 —dxg = —4 —2x1 — 2x9 4+ 2w3 — 614 — 225 —4xg = 4
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Elementary operations on equations (HFEXDZEH)

1. (Replacement) Replace one equation by the sum of itself and a multiple of another.

(it %MAz %) —2>ohfERIC, o HRROMErZMA 3,
2. (Interchange) Interchange two equations. (5¢#2) HRXDOIEFEZZEZ 5,
3. (Scaling) Multiply an equation through by a nonzero constant. (ZE#f%5) HBRRXZMEH»T 2,

Elementary row operations (EXR{TZER)
1. (Replacement) Replace one row by the sum of itself and a multiple of another. (filf52>Z /A %)
H HITIC, fMhDfTOMEE2ZMZ %,
[i,7; c]: Replace row i by the sum of row i and ¢ times row j. i {T1Z j 7D c 52 MZ %,
2. (Interchange) Interchange two rows. (X&ft) —ODfT% ANAZ %,
[i,7]: Interchange row i and row j. i {T& j T2 AR 5,

3. (Scaling) Multiply all entries in a row by a nonzero constant. (ZE#f%5) & 2172 MEH»T 5,
[i; c]: Multiply all entries in row i by a nonzero constant c. i 7% ¢ (c # 0) 53 %,

Definition 2.3 Two matrices are called row equivalent if there is a sequence of elementary row operations
that transforms one matrix into the other. Z 2 DTFIMS, HEAITEBIC LI > TN H I L E, ZNo I,
TRETH S LF ).

Proposition 2.1 If an augmented matrix of a linear system is obtained from an augmented matrix of
another linear system by a sequence of elementary row operations, i.e., if augmented matrices are row
equivalent, then the two systems have the same solution set.

—DDHN—RKITERDILRBEATIN D, DAL —KITRRRDILKREBATIN AR FEARLTEN % fiti L
RonltdsE HIL, IERFEETIIDTRETH 5% 6), o0 —XGRENIFEUMRESZ D
D, ThbLEMETSH 5,

Definition 2.4 A matrix is said to be in reduced row-echelon form if the following conditions hold. %X
D &) AT BRRA D Z1TF &),
1. The leftmost nonzero entry (in a nonzero row) is 1. (This is called the leading 1.)

H A0 UNOEZEDIE. BRPID 0 THEVWEIZ1THs, (INZEED1L LE\v,)

2. All nonzero rows are above any rows of all zeros.
TRTOEDB0TH S L) BfrrdHiuE, ZOTDITIETXRTODATH 5,
3. Each leading 1 of a row is in a column to the right of the leading 1 of the row above it.

LofroiED 113, TofToREED 1 L0 i (F) 2d 5,

4. Each leading 1 is the only nonzero entry in the column.

SO 1 #E&0HOMoEIZ, TTO0TH B,

Theorem 2.2 (Gauss-Jordan Elimination) FEvery matriz is row equivalent to one and only one ma-
triz in reduced row echelon form. fEREDITINE, fTOREARZETE Z M2 L T, BEIA 7 24750135 2
ENTE S, DO EATEMEZRBERI AT 7 247513 ME—DTH %,

Exercise 2.1 Which matrices are in reduced echelon form? Find the reduced echelon form of each of
the matrix below. BERIA 7 21751 Edc, BERIA T Z4750CTRhwvd Dt AL X 0 BEA 7 247
FNCEHE X,

0

O N0 =
O NI W

1 1 11 11 10
[1 ?2}, 0 -2 -1 1], 0 1 01
0 0 00 0 0 0 0

ONI- =
ONI=

Definition 2.5 The number of nonzero rows of the reduced row echelon form of a matrix A is called
the rank of A and write rank A. {TDOIEAREN TEZEEHIA 7 21750 D 0 TR \ITOEE Z D151 O REEX
(rank) &EF\, 179 A TR LT, rank A L3,
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Remarks:

1. Since every matrix is row equivalent to one and only one matrix in reduced row echelon form,
rank A is determined. Theorem 2.2 12 & > T, EARITI S HEALETE 2 M D H W IULEEFI A 7 R
TN 2 2 LB TE, WA 21750, E—DIcikE 200, EARITINCD rank A 2D %
ZLEDTES,

2. If A is in reduced echelon form, rank A is the number of non-zero rows and it is equal to the number
of leading 1's. A 2SMID & WEKIA 7 ZAF751THIUL, rank A 1F A DO TRWITOBMEFE L, F
e ZOBIE TR 1) OBEDFL W,

Theorem 2.3 Let A be the augmented matriz and C' the coefficient matriz of a system of linear equations
with n variables. Then the following hold. n ZE DN —RITRADIRIZ DO WTLL I IRLT %,

(1) If rank A # rank C, i.e., the reduced echelon form of A has a leading 1 in the last column, the
system does not have a solution, i.e., inconsistent.
PERGREATIN L RBATHI DR R iU, Thb b, IERREBATIIDRBEDINIRID 1 23H UL,
Z DN —RITRARIIIEZ R T2 70,

(2) Ifrank A =rank C = n, then the system has a unique solution.

PRGBS TH EARBATHIDOBEBE L . ZDBEED n 613, Z0Hy R AR T E oM
R,

(3) If rank A = rank C < n, then there are infinitely many solutions and the general solution can be
expressed with n — rank A free parameters.
TERBEATIN EAREATINDREEDE L <, BEDY r <n B 61E, 2o —-XABRAOMB (Offl) 1%
ERRAE D O n—r HOBNZEL 2 TS I LEDITE S,

Remarks: The number of solutions of a system of linear equations is either zero, one or infinity.

HAT RGO (DF) 0Bz ofEd. 12, ERE»OVWTLTH S,

Example 2.3 If A is the reduced echelon form of a system of linear equations, then the general solution
can be written as follows. XDITH Z ILRREBATIN & § 2 TTHERDIEIIRD K ) 127% 5,

s 00 5 1 - 1 —5t—5u 1 5 5
00103 1 2 t 0 1 0

A= r3 | = 1—3u = 1 +t- 0 +u-| —3
00 0 1 4 2 v 9 4u 9 0 4

. _ _

00000 0 o i} . . ;

Exercise 2.2 [Quiz 2, 2002]

1. By elementary row operations, we obtained the reduced echelon form as follows. DTokHicdhs
IINATICEIT 2 FEAEE 2 i L <. BEA 7 215521372,

1 -1 0 0 1 0 2 1 -1 0 O 1 0 2
o o 1 0 -1 0 1 (A) o o0 1 0 -1 0 1 (B)
o o 2 0 -2 1 -1 — 0O 0 0 O 0o 1 -3
L0 0 0 -3 -6 0 i L0 0 0 -3 -6 0 3
1 -1 0 0 1 0 T 1 -1 0 0 1 0 2
o o 1 0 -1 0 1 ©), o 0O 1 0 -1 0 1
O 0 0 -3 -6 0 3 o 0 o0 1 2 0 -1
L0 0 0 0 0 1 -3 | L0 0 0 0 0 1 -3

(1) Write operations in the form [4, j; ¢, [4, j], or [¢;¢].
(A), (B), (C) TTH > TV TICBT 2 EARZE % i, 5; ), [i, 4], [i; c] DN DFLETEHIT,

(A) (B) (©)

(2) Find the general solution if the matrix above is the augmented matrix of a system of linear
equations in 1, x9, T3, T4, Ts5, Tg.

Lo)ﬁﬂfﬁoﬁ Z)i@j#%ﬁfiiﬁ@%ﬁﬁ%ﬁﬁﬂ%?%‘?H% %@ﬁﬁ T1,T2,T3,T4,T5,Tg ’Ej{&) cko
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Exercises

1 z — 3Jy = 2 1 -3 2
' z + 2y = 12 1 2 12
3 — 3y — 2z = 16
2 -3z + 8y + 8 = -25
r - 2y — 2z = 7
3r — 3y + 3z = 15
3 -3 4+ 8y — 8 = =25
x - 2y + 2z = 7
3r — 3y + 3z = -2
4 -3 + 8y — 8 = 8
r - 2y 4+ 2z = =2
3 1 2 4
) 1 11 1
1 -1 5 17
1 0 1 0 1 3 -1
6 -1 0 -1 0 0 -4 -1
’ 0 1 -2 3 0o -1 3

1 0 1 0 1 3 -1
7 -1 0 -1 0 0 -4 -1
' 0 1 -2 3 0o -1 3

-2 -2 2 -6 -2 -4 4



3 Matrices
3.1 Matrix Operations: Sum and Scalar Multiple (fT5/E& : & XA HF—F)

Definition 3.1 An m x n matriz (7%1) (or (m,n) matrix), a matrix of size m x n) is an m x n
rectangular array of numbers with m rows and n columns. An n x 1 matrix is called an n-dimensional
column vector, and a 1 x n matrix an n-dimensional row vector. The vector a; is the j-th column of the
matrix A, and the vector a the i-th row of A. The number a; ; in the i-th row j-th column of a matrix
A is called the (4, j) entry, and is also denoted by A; ;. Two matrices are defined to be equal if they have
the same size and their corresponding entries are equal. An n x n matrix is called a square matriz (1E
FAH0) . TD A DRIZ m x n ORI HEE) (ICW_7%% mxn 75, (m,n) 750, F7213,
B (m,n) DITANET ). 1 xn {70l 2 n RIFCATRI ML, m x 117512 m RFEFUIRTMILED VS, L
DITHI A IZB VT, oo j BHOMUCEAT a; 2 A D B jHEF . Lo i FHOBICWAR a)
ZADEITES ), BT W jIOEZ (i,7) S EWS, TOTH Al (4,7) KT a;; TH2 K
VBITINTH B, (i,)) Md% a;; TRITIE V) ERT A= 0] BEEHCD, 1751 A D (i,5) B
D A EBOEDT 2, “ODFINE, HAEL CRUET 2MABTRTELLEE, HLLELI,
m=nTHdEE, Thbbnxn{Tilz, n REATHEV),

i
a1 a2 - Qin Lj
agq
a21 G2 -+ G2pn J ’
A= 7 7T ) A = . ) ai:[ailaai27'-~aain]‘
Am1 Am2 Gmn Amj

Definition 3.2 Let A and B be matrices of the same size and ¢ a number (called a scalar). Then the
sum (F1) A+ B is the matrix obtained by adding the entries of B to the corresponding entries of A.
The product cA is the matrix obtained by multiplying each entry of the matrix A by c¢. The matrix cA is
said to be a scalar multiple (A 5 —1f%) of A. A, B Z3ICF UK (mxn) DITH. ¢ 28 (A HF—)
£9%, Ml A+ B, ANF—F cA 2ENIET 2D E, FRITD c 5L TEERT S, Thbb,

a1 +b11 arp+bia -0 a, +bip cail  caiz - Cain

as1 + b aso + b ceo Qg+ b ca ca -eeca
A+ B— 21 21 22 292 2n 2n A= 21 22 2n

am1 + bml Am2 + bm2 o Qmn + bmn Cm1 Cam2 -+ COmn

3.2 Products of Matrices ({T5D&E)

In order to generalize the technique to solve the equation 2x = 6 or ax = b with a # 0 to a system of
linear equations, we express the following system of linear equations by Az = b. 2x = 6 1T, 1/2 %4
T TL 2=3%2H8%D, az=bIZBVT, a#£0DEEI, z=0b/a LT 5T LD—MLZH—RTT
BRICBWTERXS, 2070, TOHEV—-XGEAZ, Az =b tXTIL2EXS,

_ T b
1121 + a12®2 + -+ a1, = by a1 a2 . Gl 1 bl
_ x
a2121 + a2 + - -+ aspxn, = b2 A= | Q21 G2 - amm . 2 b— 2
......... ? - e e s s s s s e ? m - ? -
Am121 + m2T2 + - - + AmpTy = bm Aml Am2 ' Qmn Tn an

Definition 3.3 Let A be an m X n matrix above, and  an n x 1 matrix (or n-dimensional column
vector). Then the product Az is defined above. D m x n 791 A £, nx 14751 (n-RILX7 b)) x
EDRZERD LI ITERT 5,

x a1171 + a1 + -+ + a1 T
a1 aiz -+ ain 1 1121 + 1222 + -+ - + Q1pTy
x 2171 + A22%9 + -+ - + GonT
| as ax - aon 2 | 21T1 + Q2222 + - -+ + GQ2n Ty
Ax = =
am1 Am2 st Qmn Ty U121 —+ A2 + e+ AmnTn

Let B be an £ X m matrix. Next we want to define BA so that we have B(Axz) = (BA)xz. X2, B
ZUxmithlE L7t &, B(Ax) = (BA)x DMLY %5 & 912 BA ZEFE L 72\,
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Example 3.1 Let A, B,  and b be as follows. A, B, z, b ZTD Xk H T3,
A[al’l CL1,2}7B {51,1 b“],m{xl},b[l)l].
az1  G2,2 ba1 bao T2 ba
Ag — | @11 012 Ty | _ | mar1 a1 | b1 —b,
az1 Q22 T2 a2 11 + a2 2%2 ba

B(Az) = bii bio a11%1 +a12%2 | _ b1 1(a1,1271 + a1,2@2) + b1 2(a2121 + az222)
b1 bao 2,171 + G22%2 ba1(a1,121 + a1,2@2) + boa(a2 121 + az212)

(b1,1a11 + b1 2a2,1)x1 + (b11a1,2 + D1,2a2,2) T2
(b2,1a11 + bo2az1)x1 + (b 1a1,2 + b2 2a22) T2

BA — bii bia ai1 aiz | _ bi1a11 +bioaz1 biiars +bioaszs
ba1 bao az1 G2, ba1a1,1 +baoasi baiar s+ baoass

Definition 3.4 Let A = [a; ;] = [@a1, a2, ...,a,] be an m x n matrix with column vectors a1, aq, ..., a,

and B = [b, ] an £ x m matrix. We define an ¢ x n matrix C = BA by C = [Ba., Bas, ..., Ba,]. Matrix

)

C is called the product of B and A. Each entry of C' = [¢, ] is given above. A = [a; ;] = [a1,a2,...,ay]
Za,as,...,a, 2 ADIIRZ FPILETE mxnfThl, B= by ZLxmitile T2, TOLE, (xn
151 C =BA % C = [Ba1,Ba2,...,Ban] TEETS, CZ2 T BE ADELVYH, C = [Cs,t] D

BATIERD L 5 IcEI N3,

m

/
Cs,t = bsat = [bs,la bs,27 ceey bs,m]a't = bs,lafl,t + bs,2a2,t + -+ bs,mam,t = E bs,uau,t-
u=1

Example 3.2 For a 2 x 3 matrix 4 and a 3 x 2 matrix B we find products AB and BA. 2 x 3 {771 A

E. 3x2175 B O AB & BA ##HET 3,

a1l a2 a13 1 0 2 bri bu 200

A= a’ a, a’f 1o 11 y B=1 by by | =13 6

2,1 2,2 2.3 b3’1 b3’2 4 7

_ 2 57 _ -

10 2 3 6| =aB= aribiy +arpbey +arsbsy aribio +arpbeo +arsbse | _ | 10 1
0 1 1 4 7 | a21b11 +az2ba1 +az3bs1 az1bio +az2baa+azsbsa | 7 1
(25 1 0 2] [ braaiy +bigas1 bijars +bigazs biiais+biazs | 2 5
3 6 [ 01 117 BA= | byia11+0b22a21 boiai2+baazs baiarz+bagass [ = 3 6
L 47 - | b31a11 +0b32a21 bziais +bs2a22 b3iarz+bszazs | 4 7

Remarks.

1. For an m X r matrix A and an s X n matrix B, the product AB is defined only when r = s, in
which case AB is an m x n matrix. m x r {791 A & s x n {79 B 285.2 &7z, 8 AB 25\
LERTELDIT TR, r=s ThbLRYIDOTI A DO L, %DITH B DITOBH—K
L7z ZICf 5,

2. The zero matrix of size m X n is an m X n matrix whose entries are all zero. It is denoted by
0= 0y TRTEDIDED m xn (751% BEHIEF 1, 0=0,,, L,

3. The identity matrix I = I,, of size n is a square matrix such that all diagonal entries are 1 and all
other entries are 0. If A is an m X n matrix and B an n X m matrix, then Al = A and IB = B. i
1 SNDEGr ((i,49) B5T) ZXAamsT &8 9. n RIETAIC, RAKRSH$RT 1 RlE, §C
0 CTH5 L) RITANE, FAATIIE S, I1=1, LFHL, ERFICL->TE, E=E, 2fioTw
23Db% 0, fHIZEIOOND I, AZ mxn TPl BZnxmTilET5E, Al = A,
IB = B,
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Proposition 3.1 The following hold. 751 DHEIZEI L TR DFEEE DL D 2D,

(1) A+B=B+A (Commutativity (F[#ft) of Addition)
(2) A+ (B+C)=(A+B)+C (Associativity (fi&H) of Addition)
(3) A(BC)=(AB)C (Associativity (f&H) of Multiplication)
(4) A(B+C)=AB+ AC. (A+ B)C = AC + BC (Distributivity (Z7FLAE))

(5) cA=(cI)A

Definition 3.5 An n x n matrix A is is said to be invertible (A[if) (or nonsingular (IERI) ), if there is
an n X n matrix B such that BA = AB = I. In this case B is called the inverse (#if7%1) of A. If no such
matrix B can be found, then A is said to be singular (JEIEHI) . IE/5f75] A IZDWT, BA= AB =1
Zii 7. SIS0 B AR T 5 L &, Al AIETH % (i, ALHTTS (invertible matrix) [IEBIFTS
(nonsingular matrix)] TH3) &5, B & A OHfTFlEF\Wv B=A"1 LFH L,

Example 3.3 Let A be the following matrix. A Z TO X ) 7% 2x 217412 L, LTDI bbb,

a b a b d b ad — bc 0 1 0
A[c d}Then[c d}{—c a}[ 0 ad—bc}(adbc){o 1}
The matrix A is invertible if and only if ad — bc # 0 and A~! is given as follows. A 23A[HiE 9 T & &
ad —be # 0 IZ[AETH 5,
1 d -b
A7t = .
ad — bc [ —c a ]

Theorem 3.2 Let A be an n X n square matriz, and I = I, the identity matriz of size n. Set C = [A,I].
If the reduced row echelon form of C is of form [I, B, then B = A™', otherwise the inverse of A does
not exist. Thus a square matriz A is invertible if and only if the reduced echelon form of AisI. A % n
RIESATHN, T =1, 2 n RBEAATHIE L, C=[AI] %5, nx2n DIFAIZEZ 5, ZDITH C 12, 11
B 2 ARG 2 L. WA 2T ERT %, 2Dz D £9%, L. D=[I,B] DFICXK
U, B=A"1 Th%, bL. D OEFgH, I THIIUE, AL, #fTdl ek, &I, A 2N
AR >Z e, rank A=n THBHZ L EX, FETH S,

Example 3.4

0 1 1 011100
ForA=|1 2 2 |,let C=Cy=[AIl=|1 2 2 0 1 0].
3 2 1 321001

By Jordan-Gaussian elimination, find the reduced row echelon form of C. & B &, {TOHALE ZIE T,
[0 1 0 01 1100 122010

EC, = 1 0 0 122010 =1]0111P0T0]|=0C
| 0 0 1 32100 1 321001
1 0 0][1 2 2010 1 2 2 0 1 0

ECy = 0 1 0 01 1 10O0|=1]0 1 1 1 0 0| =C0C3(=EFEC)
| -3 0 1321001 0 -4 -5 0 -3 1
1 -2 071 2 2 0 1 0] 10 0 -2 1 0

EsCys = |0 1 0 0o 1 1 1 0 Oofl=1]0 1 1 1 0 0| =0,
|0 0 1[0 -4 -5 0 -3 1 | |0 -4 -5 0 -3 1
[1 0 0 1 0 0 -2 1 0] 1 0 0 -2 1 0

E.Cy = 010 0 1 1 1 ol=]101 1 1 0 0] =C¢C;
0 4 1 0 -4 -5 0 -3 1| 00 -1 4 -3 1
10 o171 0 0 =2 1 0] [1 0 0 =2 1 0 ]

EsCs = |01 0 01 1 1 ol=1]011 1 0 | =G
|00 -1 /[0 0 -1 4 -3 1| 00 1 -4 3 -1 |
10 o711 00 =21 0 100 -2 1 0 ]

EsCs = 01 -1 011 1 0 0 =]l010 5 -3 1 = [I,B] = D
00 1 |00 1 —4 3 -1 001 -4 3 -1 |

T
w



Hence D = [I,B] = E606 = E6E5C5 = E6E5E4E3E2E101 = [E6E5E4E3E2E1A, E6E5E4E3E2E1], as
Cl = [A,I] We obtain I = E6E5E4E3E2E1A, and B = E6E5E4E3E2E1. Thus I = BA.

The matrices E1, Fo, ..., Fg corresponding to elementary row operations are called elementary ma-
trices. These are invertible and there are elementary matrices By %, Ey ', ..., Eg ™', and
Bl = By 'Ey, By By B Eg T Now A = BT'BA = B! = B, B, BT E, T Es T E T
Therefore, AB =1 = BA, B= A', and A can be written as a product of elementary matrices.

-2 1 0
A= 5 -3 1
—4 3 -1

Note that, in general, for square matrices A, B of same size, if both A and B are invertible, then
ABB7'A7l = = B~'A-'AB. Hence AB is invertible and (AB)~! = B~1A~L

Definition 3.6 An n x n matrix is called an elementary matriz (FEA&17%1) if it can be obtained from
the n x n identity matrix I,, by performing a single elementary row operation. Hfif35l I = I, 26—
B DOEARZEE TR O N 21T 2 BERTH E Vv,

1. E(i,j;c): the matrix obtained from I,, by performing [i, j;c]. [i,;c] 12 & > TR 6N 51751,

2. E(i;c): the matrix obtained from I,, by performing [i;c] (c # 0). [i;¢] (2 & > TR S 151771,

3. E(i,j): the matrix obtained from I,, by performing [i,j]. [i, ] IZ & > T 6 N 51771,

Proposition 3.3 Let E(i,j;c), E(i;c) and E(i,7) be elementary matrices of size n, and A an n X m
matriz. Then

A% i 04, A BG oA, and A L EG, A
Moreover, E(i,j;c), E(i;c) and E(i,j) are invertible and E(i, j;¢) ™' = E(i,7; —c), E(i;c)~t = E(i;1/c)
and E(i,7)~' = E(i,§).
Proposition 3.4 For a square matriz A of size n, the following are (logically) equivalent. A % n XIkE
e § %, Xz GuBlICc) FEfETH 5,
(1) A is invertible, i.e., there is a square matriz B of size n such that BA = AB = 1. A (373, T 7%
L, BA=AB —I 2729 n KIET{15 B 3EET %,
(2) For each b, Ax = b has a unique solution. Az = b X, b Z—2RD B L VO —DD%
£,
(3) Az = 0 has a unique solution. Ax = 0 ¥77Z—DDfF%FFD,

(4) I is the reduced row echelon form of A. A \ZATDMEARLEIE % i L1556 412 BEY A 7 A4T50IL AT
I THb,

(5) A can be written as a product of elementary matrices. A &, HEARTID WL D DETHEL T LD
Hik s,

Exercise 3.1 [Quiz 3, 2002]

1 -1 3 1 -2 0 1 -2 0 1 0 O
A=| 3 1 1 |,B=|-1 2 1|, c=[BIQ=]|-1 2 1010
-1 2 -5 0 1 1 0 1 1 0 0 1
1. (a) Compute AB. LDOITHIDON AB Z5tHE X,
(b) A is not invertible. Why? 1751 A (£#if75] % K7z %\, BHZ R X,
2. We want to find the inverse of B as follows. DL FDRIC L TT7] B DiifT¥ %KD %,
1 -2 01 0 O 1 0 2 1 0 2
c—-Ci=l0 0 11 10|—=Ca=|100111U0]|—
0O 1 1 0 0 1 01 1 0 0 1

(a) Cq is obtained by multiplying a matrix T to C from the left. Find T and its inverse. C; {Z& %
fTONT ZEDSIT 5 E Cy D65, T LZOMITH S ZRkdD X, (T, S IEFZNZENTC, = Cs,
ST =TS =1 %iii7=TdbD, )

(b) Find the inverse of B. {741 B 14z ko X,
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6. 2003, Quiz 3. 2 (b) Find AL

]ﬁ

1 23 1 00

23 7010
2 56 001

[Avl] = [

7. 2004, Quiz 3. 2 (b) Find A~".

1
-5 0 1 0| —
0

3

-1

8. 2005, Quiz 3. 3. Find A~1.

—

|

0 -3 1
-1 4 =22 0 1 0
2 1 0 0

1

[Avl] = |:
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4 Polynomials and Functions

4.1 Polynomials (ZHER)

Definition 4.1 Let cg,c1,...,c, be numbers. The expression below involving a symbol x is called a
polynomial in x. If ¢, # 0, f(z) is of degree n and denoted deg f(x) = n. When we consider the
correspondence between a number z and the value of f(z), f(x) is called a polynomial function. We
define deg0 = —o0
f(z) =cpx™ + 12" M+ 1z + co.

COsCly--osCp ZBET DI, LX) BT 2 250X %E (2 ICBT2) ZHAL VI, ¢, #0 DL E,
f(x) Z2 ¥ n OLHAE VW, deg f(z) =n EEL, 2 ICBZERALT, f(z) DIEEDONIEZEZ 58
k. flo) 2L HEAREEE VI, degl= —oc0 ERIHT 2,

Theorem 4.1 Let f(z) and g(x) be polynomials. Then the following hold. f(x), g(x) ZZ%HXET %,
(1) deg f(z)g(x) = deg f(z) + deg g(z).

(2) If g(z) # 0, then there are unique polynomials q(x), r(x) satisfying the following conditions.

(4-1) f(@) = q(z)g(x) + r(z), degr(z) < degg(z).
g(z) #0 % 51F, ZHK q(x), r(z) T Lz TOSONLEMEET 5,
(3) Let ay,az,...,an be distinct numbers. If f(a1) = f(az) = -+ = f(am) = 0, then there is a

polynomial g(z) satisfying the following.
f@) = (2 —a1)(x —a2) -+ (¥ — am)g(x), degg(z) = deg f(z) —

ai,ag,. .. a0y, ZHEZZ8ET S, fla)) = flaz) = = flam) =0 &S5 IFEEHK g(z) TLOKX
ZARIZT S DT 5,
Exercise 4.1 f(z) =2z* — 23 + 22 + 1, g(z) = 2% — 22 + 4, h(x) = 222 + 32 — 2, r(z) = —14z + 9.
1. deg f(z) = , degg(x) = , deg h(z) = , degr(z) = , deg 29 = , deg0 =
2. degg(z)h(z) =, g(x)h(z) =
3. g()h(z) +r(z) =
4. f(2) = . Find a polynomial ¢(z), and a number s such that f(x) = q(z)(x —2) + s

Let a1, ag, ..., any be distinct numbers, P(x) = (z—a1)(z—az) -+ - (x—an,) and P;(x) = P(z)/(x—a;).
Then for j # i, Pi(a;) = 0 as P;(z) has a factor (z—a;), and P;(a;) # 0. Let Q;(x) = P;(z)/Pi(a;). Then
Qi(a;) =0 and Q;(a;) = 1. a1, a2,...,ay ZHRLZEETZ, Plx) = (z —a1)(z — az) - (z — am)-
P(x)=Px)/(x—a;) £TDE, jA£iDEEIX, P(z) 1d (v —a;) DRFZELDS Pia;) =0 £ 5,
7. P(ai)) #0 TH B, 22T Qi(x) = Pi(z)/Pi(a;) £F5 &, Qi(aj) =0, Qi(a;) =1 E% 35,

Proposition 4.2 (Lagrangian Interpolation, 772> Y 2 ®fBAX ) Let a1, a0,...,a, be distinct
numbers. Then there is a polynomial f(x) satisfying f(a1) = b1, f(az2) = ba,..., f(am) = bm. f(2)
can be written as follows with a polynomial h(x). Moreover, if deg f(x) £ m — 1, such f(x) is uniquely
determined.

(4-2) f(@) = b1Q1 () + b2Qa(2) + - - + bmQm (2) + h(z) P ().

ar,as,...,a,m HRELZHETE, ZOLEE, fa) = by, f( 2) = b27~'~7f(am) = %(ﬁﬁf’?‘%ﬂﬁ
K flz) BFET 2, f(z) 1d. HELHN h(z) 2T, HIZEOXH)ITE LS LB TE S, R

deg f(z) Em —1 Zii7=THDEF LV EDLEITTH S,

Example 4.1 The polynomial f(z) in (4-3) is the only polynomial of degree at most two satisfying

f(1) = b1, f(2) = be, f(3) = bs. Every polynomial f(z) satisfying f(1) = b1, f(2) = ba, f(3) = b3 can be
written at the top of the next page, where h(z) is a polynomial.

(z —2)(z —3) (x—1)(xz—3) (z —1)(z —2)
4B e = ey T e e T G062
= %1(33—2)(96—3)—1)2(95—1)(m—3)+b2(x_1>($_2).
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b—l(x —2)(x —3) —ba(z—1)(x —3) + bfg(ac —1)(x—=2)+ h(z)(x —1)(z —2)(x — 3).

2 2
FEDZIERIE F(1) = by, f(2) = b, f(3) = b3 &z T, £z, Wiz, 2Dk H%EANZ, H24HEKX
{ZEMTES,

h(z) 2T EORRICHE

4.2 Formula (2R)
a?—v? = (a—b)(a+b), a®>—b> = (a—b)(a®>+ab+b?), 2° -1 = (z—1)(z* + 23+ 22 +2+1). In general,

n—1
(474) a® — b = (Cl _ b)(an—l + an—2b+ . +an—i—lbi 4ot abn—Q +bn—1) — (a _ b) Zan—l—ibi.
i=0
Exercise 4.2 1. (a+b)(a—0b) = (a —b)(a® + ab + b?) = z? 2’ = z-xlf =
2. 23 —1= P +8=y"—(-2)°=
3.zt — gyt = yrt—1= 24— 16 =
4. a® —b° = 25 —32=25-25=

4.3 Synthetic Division (¥ 3 TBRE)

Let f(x) be a polynomial of degree n, and let g(z) = x — a. Then by Theorem 4.1 (2), there are
polynomials ¢(z) and r(z) satisfying

f(@) =q()(z —a) +r(z), deg(r(z)) < deg(g(z)) = deg(z —a) =1.

Since deg(r(x)) < 1, r(x) is a constant. Let r(x) = r. So, f(z) = q(x)(xz — a) + r. In the following we
introduce a method called synthetic division to find ¢(z) and r.

If f(z) is a constant f, then by setting ¢(x) = 0 and r = f, we have f(z) = ¢(z)(z —a) + 7. So
we may assume that deg(f(z)) > 1. Then the degree of the left hand side of f(z) — r = ¢(z)(z — a) is
deg f(z) = n. Hence by Theorem 4.1 (1), it is equal to deg(q(x)) + deg(z — a)

n = deg(f(z)) = deg(f(z) — r) = deg(q(2)(z — a)) = deg(q(z)) + deg(z — a) = deg(g(x)) + 1.

Thus deg(g(z)) = n — 1. Hence by setting f(x) and ¢(x) as follows and compare the both hand sides of
the equation f(z) —r = q(x)(z — a).

f(@) = cpa™+ Cno12" "+ 4 ez + ¢,
q(r) = bp12" 7t 4 by0x" P 4 by + bo.
fl@)—r = " +en12"  Hep 0" P+ ozt (co — 1),
qz)(x—a) = (bp1z" by oz 24+ bz +bo)(x—a)

= by 12"+ (byo —by_1a)x" ' 4 (by_3 — bp_0a)x" 2 + -+ (bg — bra)z + (—boa).

—1 ...,z and the constant term (the coefficient of °), we have

Now comparing the coefficients of z™, z™
Cn=bp1,Ch1=bp 2—bp 10, ch2=>by 3—by 2a, ..., c1 =byg—bia, co —r = —boa.
Hence

bp_1 = Cn, bp—2 =cp_1+ bnflaa bn73 =Cp—2+ bn72a7 ceey bO =c1+ blav T=co+ boa'

Therefore to find ¢(z) = b,— 12" 1 + by_02™ 2 + -+ + bz + by and 7, first b, _1 is ¢, the coefficient of
2™ of f(x). bp—_o is the sum of ¢,—1 and a times b,_1. b,_3 is the sum of ¢,,_5 and a times b, _5. Finally,
the sum of ¢y and a times bpbecomes r. Therefore, we can write as follows.

ﬂ Cn Cn—1 Cn—2 ce C1 Co
bn_la bn_ga s b1a boa
Cn Cne1+bp_1a cpo+by_oa -+ c1+bia | cot+ba(=r)
(: bn—l) (: bn—2) (: bn—3) e (: bO)
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Example 4.2 Let f(x) = 2® — 222 — 52 + 6 and g(z) = = — 2. Find ¢(z) and r satisfying f(x) =
o) ( —2) + 7.

Solution. Since deg(f(z)) = 3, deg(q(z)) = 2. Since r =
f(2), we can find r by substituting 2 into z of f(z). Now

we use synthetic division to find both g(z) = byx?+ b2 +bg 2| 1 —2 =5 6

and r at a time. Calculation is shown right. By it we have, 2 0 —10
2 1 0 -5 —4

3 —22% — 52 +6 = (22 —5)(x —2) — 4. 2 4

2 1 2 -1

Similarly, from the third line to the fifth we have that 92
2 1 4

22 —5=(zx+2)(x—2) -1 2] (4
From the fifth to the seventh we know that \i

z+2=(x—-2)+4
by synthetic division. Thus we have
flx) = (z=2)+4)(z—-2)—D(x—-2)—4=(2-2°+4(x—-22*—(z—-2)—4
= VP44’ —y—4=—-4d—y+4y°+¢* wherey=z—2.

In this way, f(x) is written as a polynomial in  — 2. This is useful to find valuess of f(z) near 2. For
example, if x = 2.01, then (z — 2)® = 0.01% = 0.000001, (z — 2)? = 0.012 = 0.0001 are very small. Hence
near 2, the value of f(z) is close to —4 — (z —2). And —4 — (z — 2) + 4(z — 2)? gives a better estimate.
It is much easier to compute this compared with the computation of the exact value of f(z).

Exercise 4.3 [Quiz 4 (2002) modified] Let f(z) be a polynomial of degree three satisfying f(1) = 33,
f(2) =27, f(3) =14, f(4) = 0. f(x) % 3RZHENXT, f(1) =33, f(2) =27, f(3) =14, f(4) =0 Zhi/:
THDOET B,

1. Find a polynomial g(x) of degree 2 such that f(z) = (z — 4)g(z). 2 XL g(x) T, f(z) =
(x—4)g(z) 755D DIITH,

2. Find by, by, b3, by when f(x) is expressed as follows. f(x) Z FD X ) IZFH IR, by, bo, bg, by &K
X,

flx) = bi(z—2)(xz—-3)(x—4)+ba(z—1)(z—3)(x—4)
+b3(x —1)(x —2)(x —4) + bg(x — 1)(x — 2)(x — 3).
Exercise 4.4 [Quiz 4 (2003)]

1. Let f(z) be a polynomial of degree 7, and let g(x) be a polynomial of degree 3. Suppose ¢(z) and
r(x) are polynomials satisfying the following. What is the degree of ¢(z)? Why?

F(@) = gla)g(a) + r(x), degr(z) < 3.

flo) #XED T DSER, g(a) 2XED 3 DSEAL T2, ZOLE, q(z) & r(z) 2FHEATL
DREWETHDOET 2, COLE. qlz) DREIZV L Db, ZOFH b,

2. Find a polynomial p(z) and a number r satisfying 22° —3z?+2+1 = p(z)(x—2)+r. 223322 +2+1 =
p@)(z—2)+r &5 K9 BLHEA p(x) £ r 2RO X,

3. Find as, as, ay, ag satisfying the following. X% 723 asz,az,a1,a9 KD X,
2% =322 + 24+ 1 =az(z —2)% + az(z — 2)? + a1 (x — 2) + ao.
4. Let h(z) be as written below. Find by, b1, b2, b3 when h(0) = 6, h(1) = —2, h(2) = 10, h(3) = —6.
hz)=bo-(x—1)(xz—=2)(x—=3)+by-x(z —2)(x —3)+ b -x(z —1)(x — 3) + b3 - x(z — 1)(z — 2).

Lo h(z) 1E. h(0) =6, h(1) = —2, h(2) = 10, h(3) = —6 Zili7zT £ T2, DL E, by, by, by, bs
RO X,



4.4 Exponential and Logarithmic Functions (35ZBI%L - XIEEIED)

Definition 4.2 [Exponential Function ($§%(B4%() ] For a > 0, the function f(z) = a® is called the
exponential function (FE#BI%L) with base a. (¢ ZJE L § %) . For any real number (¥#) z, a® is
defined by (i) - (iii).

n times
(i)a’=1, a"=a-a---a, a"=(1/a)" (n=1,2,3,....)

(ii) a?/? = YaP for integers (whole number, %K) p, ¢ with ¢ > 0.
(iii) a® = lim, .o a’ (when by, by, b3, ... converges (PUR) to x) [to be discussed later]

, 23‘1’ 23‘147 23‘141

For example, for a = 2, 27 is defined as the value the sequence 23 ,...converges to.

Proposition 4.3 (Exponential Law ($8#UEBR) ) Let a,x,y be real numbers such that a > 0. a > 0
5, ERDOFEE o, y ITHL T, XKL T 5,

a*tV =a"-a¥, (a®)¥ =a"v.
Definition 4.3 [Logarithm (X#{) ] For 1 # a > 0 we write z = log, b when b = a®, and z called the

logarithm of b with base a. (a ZEKET 25 b DXE) If b > 0 there is a unique = satisfying b = a”.
b=a" < x =1log,b.

Since a® = 1, log, 1 = 0. By definition, a'°8* = .
Example 4.3 For a = 10, 10 = 10!, 100 = 102, 100000 = 10°, 0.1 = 10—, 0.01 = 10~2. Hence
log,( 10 =1, log;( 100 = 2, log,, 100000 = 5, log;,0.1 = —1, log;,0.01 = —2.
Fora=2,2=2" 4 =22 1024 =2'9 \/2=21/21/2 = 27!, Hence
logy, 2 = 1, logy 4 = 2, log, 1024 = 10, log, V2 = 0.5, logy(1/2) = —1.

Proposition 4.4 For a > 0, the following hold.

(i) log, zy = log, = +log, y.

(ii) log, z¥ = ylog, x.

1
(iii) If b > 0, then log, x = 26T
log, a

Proof. (i) Suppose b = log, =, ¢ = log, y. By definition, z = a®, y = a®. Hence a**¢ = a® - a¢
Thus log, zy = b+ ¢ = log, « + log, y.
(ii) Let b = log, =¥, ¢ = log, . Since a
cy = ylog, x.

(iii) Let ¢ = log, =, d = log, a. Since z = a°, a = b?, z = a® = (b%)¢ = b°?. Thus,

= xy.

b b

=aY x=a° z¥ = a’ = (a°)¥ = a®¥. Therefore, log, 2¥ = b =

1
(log, x)(log, a) = ed = logy x, thus log, x = f)iizz

Example 4.4 Suppose f(x) = c-a’®. Let g(x) be the logarithm of f(x) of base a. Then
g(z) =log,(c-a™) =log,c+m-z=m-x+0b, (b=1log,c).

Therefore, g(x) becomes a polynomial of degree one in z. Thus an exponential function becomes a simple
function by taking logarithm.



Example 4.5 Richter Scale (%7 =7 2 — F): The Richter magnitude involves measuring the amplitude
(height) of the largest recorded wave at a specific distance from the seismic source. Adjustments are
included for the variation in the distance between the various seismographs and the epicentre of the
earthquakes. The Richter scale is a base-10 logarithmic scale, meaning that each order of magnitude is
10 times more intensive than the last one. In other words, a two is 10 times more intense than a one and
a three is 100 times greater. In the case of the Richter scale, the increase is in wave amplitude. That
is, the wave amplitude in a level 6 earthquake is 10 times greater than in a level 5 earthquake, and the
amplitude increases 100 times between a level 7 earthquake and a level 9 earthquake. The amount of
energy released increases 31.7 times [hs: about 32 = 2°] between whole number values.
(http://www.sms-tsunami-warning.com/pages/richter-scale)

Hiroshima A-bomb ~ M6 ~ 20kton, where 1kton = TNT1kton ~ 10%cal ~ 4.2 x 10°.J.

Exercises

1. Find a polynomial of degree at most 3 satisfying f(0) = 4. f(1) =3, f(2) =—-6. f(3)=1.
[Final 2001, 11-4]

2. Find polynomials Q(z) and f(z) of degree at most 3 satisfying Q(—1) = 1, Q(0) = Q(1) = Q(2) =0,
and f(—1) =2, f(0) = -1, f(1) =3, f(2) = —6. [Final 2003, II-5]

3. Let f(z) be a polynomial in z satisfying f(1) =2, f(2) =7, f(3) =1, f(4) =8. [Quiz 4-1, 2001]

(a) Find an f(z) of degree at most three.

(b) Find an f(x) of degree exactly four.

4. Let f(z) = 22+ 9234622 —82+5 = q(x)(z+2)+7 = ca(v+2)* +c3(z+2)3+ca(2+2)% +c1 (242) +co.
Find a polynomial g(x), a constant r, and ¢4, c3, ¢2, 1, Co. [Final 2004, I-6]

5. Let Q(z) be a polynomial satisfying Q(—5) = @Q(0) = Q(5) = Q(10) = 0 and Q(15) = 1. Find a
polynomial Q(z) of degree 4, and a polynomial Q(x) of degree 5. [Final 2004, I-7]



6. Let f(z) be a polynomial in z satisfying f(1) = —2, f(2) =2, f(3) = 14, f(4) = 40.
[Quiz 5-1, 2001]

(a) Find a polynomial g(z) of degree at most 3 satisfying g(1) =1, ¢g(2) = g(3) = g(4) = 0.

(b) Find an f(x) of degree at most three.

(c) Find an f(z) of degree exactly four.

7. Let f(x) = 22% — 323 — 22 — 32 + 3 = as(z — 2)* + az(x — 2)® + az(v — 2)® + a1 (z — 2) + ag. Find
g, a1, 42, a3, 04. [Final 2003, III-2(a)]

8. Let f(z) be a polynomial satisfying f(1) = a1, f(2) = az2, f(3) = a3, f(4) = ay. We want to find a
polynomial g(z) satisfying ¢g(1) = a1, ¢(2) = aa, g(3) = as, g(4) = a4, g(5) = a5 using f(z).
[Final 2004, I11-B]

(a) Show that there is a polynomial h(z) such that g(z) = f(x)+h(x)(z —1)(z —2)(z —3)(x —4).

(b) Show that if h(x) satisfies h(5) = (a5 — f(5))/(5 = 1)(5 —2)(5 — 3)(5 — 4) = (a5 — f(5))/24,
then g(z) in (a) always satisfies the condition.

9. Use the values in Example 4.5. [Quiz 5-3, 2005]

(a) Let = be a positive number. Find a formula to express the energy of an earthquake of Mz,
i.e., magnitude x.

(b) At the earthquake of M9, the energy released is approximately n times the energy released by
Hiroshima A-bomb. Find n.



5 Limit of a Sequence and Continuity of a Function

5.1 Limit of a Sequence (¥5DIBFR)

Limit (f8FR) : When a sequence of numbers {a,,} = {ai, as,as, ...} approaches to a number «, i.e., if
it tends to «, we say « is its limit (or {a,} converges to a) and write a,, — a(n — o) or lim,,_, a, = a.
If there is no limit, it is divergent. 4 {a,} = {a1,a2,a3,...} D—=EDME o \TED K, {a,} 1T a
IZUNER (converge) § 5. 7% {a,} DWREIZ o« THZ LV, 5T a, - a(n — ), £7IF
lim, oo an = EEFL, PORL R WEINIFERT 2 (diverge) £\, (X SIZHllD < oo ITHEHL, —00 I
FEHL, IRE) R &N A EEbH 505, T2 TR, R BFHMD " DOXPDAEZ L L ET 5, )

Proposition 5.1 Suppose lim a,, = «, lim b, = 8. Then the following hold.

n—oo

(1) lim ca, =c lim a, = ca, if ¢ is a constant (FE%).

n—oo n—0oo

(2) lim (an +b,) = lim a, + lim b, = a+ 0.

(3) lim anb, = (Hm an> ( lim bn) = af.

n—oo n—oo n—oo

(4) lim On = Mnooon 0 g g 52 0).

n—oo b, lim, o0 b, B’

1
Example 5.1 1. lim — =0: converges to 0 (0 IZILH).

n—oo N

2. Divergent (LA DE1E$ X THEL)

lim,, oo 1 = oo : diverges to +oo (IEDMERKIZFERL),
lim, ..o —m = —oo : diverges to —oco (BLDMRKIZFEHY),
lim,, o (—1)"n : vibration (FEELHRHE).

3. If a,, = ™, then the following holds.
oo : diverges to +oo ((IEDMERKIC) FH) if r > 1,

i g — J 1 ¢ converges to 1 (1 1ZIUR) ifr =1,
neo’ ) 0: converges to 0 (0 IZILHK) if [r] <1
vibration (FEHL (HREh)) if r < 1.

. 2\" i . 3\" . \" .. -
Example 5.2 1. lim ~z =0, lim = lim { =) =0. lim —3 divergent (F&#))

2. lim 27§: lim 2 — lim §:270:2.

n—oo n n—oo n—oo N
1 1 1 1
3. lim (3—) (4+) = (lim 3—) (lim 4—1—) =3-4=12.
. 2-n 21 limpa2-1 -1 1
4. lim = lim —5 = - E = — ==
n—oo3n—5 n—o03 -2 lim, 03— 2 3 3
1
= 0
5. i =1l n ——-=0.
) n?+1 nHH;O1+ 1
24+ 2n+3 +2+ 3 limyoont+2+2
6. lim e e TN = 1m', " 5+ = lim n+ 2 = oco. divergent (¥H#K)
neo n+2 n—oo 1+ﬁ hmn—>ool+* n—oo
o GO0 ne ) GG GR )

8. lim = lim

ooy

o-1



5.2 Napier’s constant (Nepier D%, BAWHODIE) -

Let a, = (1 + %)” Then a; = 2, ag = 2.25, ag = 2.37,...,a, = 2.59, ajo = 2.61, azgs = 2.71.... It is
known that this sequence is increasing and does not exceed 3.

1 n
(5-5) lim (1 + n) = e = 2.7182818284590 - - -
x
~1
(5-6) lim ——— = 1.
z—0 x

5.3 Limits and Continuity of a Function (BI¥IDIERR - Ei#Hx1E)

Definition 5.1 If f(z) approaches to « as x approaches to, but not equals, a, we say that « is the limit
of f(z) as = approaches a, and write as follows:
f(z) = a(z—a)or lim f(z) =a.
r—a

BIEL f(z) ICBWT 28w Dda ERLEDMHZ LD BDS o ITEDL EE, f(x) B —DDfH o ITEDI &
Sz M alliEDCEED f(x) DMRIEIX o TH 2 L, EORKITE,

Proposition 5.2 Suppose lim f(z) = «, lim g(x) = 8. Then the following hold.

(1) limef(z)=c liin f(x) =ca ifcis a constant. ()

r—a

() m (f(@) +g(x)) = lim f(z) + lm g(a) = a+ 0

r—a

(3) lim f(x)g() = (lim /(2)) (lm g(2)) =

f(z) _ lim, ., f(x) _

) mhg}z g(z)  limg_qg(x)

(g(z) #0, 5 #0)

| Q

Definition 5.2 If a function f(x) defined at a satisfies lim f(z) = f(a), we say that f(x) is continuous

at z = a. If a function f(z) is continuous for all z, f(z) is said to be continuous. —#IZEHE f(z) 128

W, lim f(x) = f(a) DS SZOWE, BI%L f(2) X 2 = a T (continuous) TH B &), £/, B
BOPERIN TV LEKNT f(o) PWEIETH 2 L&, f(o) 1EHETH 2, FREGHAKTHZ v ),

Example 5.3 Polynomial functions and ¢® with @ > 0 are continuous for all z. If f(z) and g(z) are
continuous, then f(x) + g(z), f(z) — g(x), ¢- f(x) and f(x)g(x) are continuous. Moreover, f(z)/g(x) is
continuous whenever g(z) # 0. ZHA, o® (a > 0) B EIFZ, FRTHFETH S, 7. f(2), g(z) 3L
WHIRE 2 51X, ¢ ZERET B EE, f(x)+g(x), f(z) —g(x), ¢ f(2), f(z)g(x) BEHTH S, 51T,
g(x) £0 LR BRICEWTIE, f(x)/g(x) bHEHTH 5,

Example 5.4 1. Let us consider the limit of f(z) = (2% + 7x)/(z + 1) as = approaches —2. Since
both 22 + 7z and x + 1 are polynomials, they are continuous at x = —2. Moreover, the denominator
x + 1 is nonzero near x = —2. Hence

22+ 7 lim, 22?2+ 7z (=2)2+7(-2) -10

1. = = = == 10
oz 41 limy_ sz +1 (—2)+1 1
Since f(—2) = 10 in this case, f(z) is continuous at x = —2.

2. Let us consider the limit of g(z) = (2® — 5z +4)/(x — 4) as x approaches 4. Since the denominator
is zero at © = 4, g(z) is not defined at = 4. However it is defined if = # 4. Since the numerator
is2? =5z +4=(z—4)(x—1), g(xr) =2 — 1 when x # 4. Hence

2 4 —4 —1
Tl e U OO ) | Calt) R P B RS
r—4 x—4 x—4 r—4 r—4

52



or x(x—1)

3. lim = lim =limzx—-1=-1.
x—0 x x—0 x x—0
24 -2 2
4. lim 2 T Gl [ G k) B TP S S
r—2 ;L‘72 r—2 :L‘72 r—2
2 -2 -1 2
Ak A S O ol )] G ) SR RGP SR S S
rx—1 x—1 r—1 x—1 r—1
_ 9\ (y2 2 2 5.
6. lim 8 ~ lim (x —2)(z +2x—|—4): i & t2r+4 2742 2—|—4:4.
1—>2.132—.T—2 =2 (z—=2)(x+1) e—2  x+1 2+1

The set [a,b] = {z | a £ x < b} is called a closed interval (FHIX[H), and (a,b) = {z | a < x < b} an
open interval (FAX[H).

Proposition 5.3 Suppose f(z) is a continuous function defined on a closed interval [a,b] and a is in
between f(a) and f(b). Then there is a number c in this interval such that f(c) = a. PAXMH [a,b] =T
HHE R BEL f(2) ICBVT, aZ. fla) &, f(b) DEIDIEET S E. flo)=a %25 ¢ 5. XH [a,b]
WNich 5.

Example 5.5 Let f(x) = 42° — 102 — 2023 + 4022 + 162 — 15. Then f(—2) = —15, f(—1) = 15,
f(0) = =15, f(1) =15, f(2) = —15, f(3) = 15. Hence in each of the five intervals [—2, —1], [-1, 0], [0, 1]
[1,2] and [2, 3] has at least one point x with f(z) =0, i.e., zero of f(x). Since the degree of f(x) is five
there are at most five zeros. !Thus in each interval above has exactly one zero.

Proposition 5.4 f f(x) is continuous on a closed interval [a, b], then f(z) takes a mazimal and a minimal

value on this interval. BAXIA [a,b] L CTEFE2B% f(2) 13, [a,b] LOmK - &M% L 5,

Exercises

1. Find the limit of the following. R DR % K X, [Quizzes 4, 5 (2001), Final 2001 II-6, modified]

3
2
(a) lim e

n—oo N3

(¢) lim —0—— [Final 2001 II-6]

2. Find the limit of the following. XDMRZ K K,  [Quiz 5, (2001), Quiz 5-1 (2002), Final 2002]

@) tim 2=

(b) Jig %

(© tim =8

(@ m 520
3+ 27

ooty 32 +2x—3

() lim 2zt — 1523 + 4222 — 522 + 24
a—2 x° — 5t 4+ 53 + 1022 — 202 + 8
22+ 22 —-5x+3

(&) Jirg 2t — a3 —x+1 [Final 2002]

1By Theorem 4.1, every polynomial of degree n has at most n zeros. n X% EXDIRILE 4 n

-3



v 1

(h) lim S —— (=1 [Final 2002]
2

(i) lim 15 +0 [Final 2003, 11-6]

z—-2 33+ 8

3. Let f(x) = #°—222—5a+3. Then f(—1) = 5, £(0) = 3, f(1) = —3, f(2) = =T, f(3) = —3, f(4) = 15.
[Quiz 5-2 (2002)]

(a) Determine all intervals below including a zero of f(z) = 0. XOXED I &, f(x) =0 %z
T2 2EB0b0TTRTRER X,

[-1,0] [0,1] [1,2] [2,3] [3,4]

(b) Does f(x) has a zero in [-2,—1]?7 Why? X[ [-2,—1] IZ, f(z) =0 27§ z 2&TD,
S CE RSP U o

4. Find the limit of the following. Show work. If it diverges, give a brief explanation. [Quiz 5-1, 2003]

2n —5
y
(a) lim o—r"

2
—4
(c lim 2
z—2 r — 2
22 —2x—3
d) 1
(d) z—2 22+ —6
2 +x—6

x—2)(23 — 222 + 5z — 8)
z—2 3 —x2 -4

5. A polynomial f(z) = 2% — 623 + 822 + 10z — 19 satisfies f(1) = —6. Is there a zero of f(z) (x with
f(z) = 0) within the interval [1,2]? Give an explanation of your answer. [Quiz 5-2, 2003]

6. Find the limit of the following. Show work. If it diverges, give a brief explanation. [Quiz 5-1, 2004]

3 2
(a) nh—>r20 1n—+7n

8
22 +4
<C> z—2 1+ 2
2 —4
d) 1
(d) lim ——F
2 +4
(e) lim ———
r* - 16
f) 1
() 225 78 302 4 4o — 4
7. Explain why the following is valid. [Quiz 5-2, 2004]
(23 — 2% +5)(x — 2) . a®—22+5

I =
i (2o —3)(r—2) ootz 3




6 Derivatives

6.1 Differentiation and Derivatives (% & EREE)

The derivative of a function is used to determine the rate of change. Hence it is possible to determine
whether the function is increasing or decreasing at a point, maximal or minimal values, and the shape of
the graph of a function. T ZBABDZE K (ZNZNDRTED L SEWVDRETHZ TV 2> TWw5
) 2RIV SENS, ZHUCE ST, 2R THBDSMA TR0, o T30 THR, &
TIRRP., BNDEZ L 50, ZOBBD 77 7 DM, &2z MElE 2075 81X 20 THHNE I L
MWTE 5,

Definition 6.1 If a function f(z) is defined at = @ and its neighborhood, and the limit below exists,
we say that f(x) is differentiable at x = a, and the limit is denoted by f’(a), which is called the derivative
of f(x) at a. f'(a) is the slope of the tangent line to the curve y = f(x) at © = a. When f(x) has a
derivative at each a, the function corresponding a to f’(a) is called the derivative of f(x) and denoted
by f'(z), df /dxz or Df. The process of finding a derivative is called differentiation.

@) fla)

g—a T —a
BEEL f(x) 25, Mz =a ROEZDWEL TERINTVT, 220, LOWMBRIEET 2 L E, f(v) 1 a TH
FHHETH S EF . ZOMRMEE f(r) DR a ITBT2WMAHREES V. f(a) EEL, f(a) 1d. z=a
BT MR y = f(z) DEROBETH 2, BIE f(z) 23, Kria THOWETHL EE, all f(a) Z
MBS 2% % f(x) DEBEEE S\, f(x), df/de. Df TET, B f(z) 226, ZDOEBEE /()
ZRODIEZ, WITTHER),

Thus the derivative f’(z) is defined as follows. Z DEFD 6 EBIEL f/(z) IXD LK) ITEELI NS,

oy e S () = fx)
Play = ==
)~ f(@)
h—0 h
When f(z) is differentiable at a, f(z) is continuous at a. Hence f(z) — f(a) as x — a. B f(z) »3
Moa TR GIE, Ha TEFETH S, T4bE oz 23 a lZiEDK & f(z) DIEIZ fla) IZIEDK,

(Sett—x=h,ort=x+h.)

(Note that ¢t — « if and only if h =t — 2 — 0.)

Proposition 6.1 Let f(x) and g(x) are differentiable functions, and ¢ a constant. Then the following

hold. f(z), g(z) Z W AIBEZBEEL. ¢ Z BB E T2 L UT YR D 32D,
(1) (f(@) +9(x)) = f'(x) + g'(x), (cf(x)) =cf'(2).
(2) (f(@)g(x))" = f(x)g(x) + f(x)g'(x).
3) (f(@) _ ['@)g(@) — fz)g'(z)

9(x) g(z)?
Example 6.1 1. (Derivative of a polynomial ZHA D7) The derivative of f(z) = 2™ at = = a,
and f'(x).
lim " —aqm ~ lim (37 _ CL)(,CCn_l + al,n—Z 4+t an—Z.,L, 4 an—l) (5_1)
r—a T — Q T—a T —a
= lim (l‘nil Lar" 24 a2 4 anfl)
= na""l.

If f(z) = 2", then f'(x) = na"~! as above. fit> T, f(z) = 2™ OEREIL f/(z) = na"~ 1,

2. (Derivative of an exponential function fEEIBDMIT) (e*)’ = e®, We apply the following formula.

h_ n
lim ¢ 1 =1, where e = lim (1—|— 1> .
h n

h—0 n— o0
x a a+h a h
, er—et . e —e* o.oer=1
f'(a) = lim = lim ——— =¢% lim ="
t—a T —a h—0 h h—0 h



Proposition 6.2 (Chain Rule: Derivative of a composite function SREBEEBDMS) Suppose that
g(x) is differentiable at x = a and f(z) is differentiable at v = b = g(a). Set F(x) = f(g(x)). Then the
derivative of F(x) at x = a is as follows.
d
Fl(a) = ——f(9(a)) = f'(g(a))g'(a)- Hence F'(z) = f'(g(z))d' ().
Proof. Set F(xz) = f(g(x)). Then
P~ 106D ~ o)

Tr—a Tr—a

_ i FO@) = fgl@) 9(@) — gla)
a—a  g(z) - g(a) z—a T —a
= f'(9(a)d'(a).
Since g(z) is differentiable at x = a, it is continuous at a, i.e., g(z) — g(a) as x — a. -

Example 6.2 Let f(x) = z'/™. Then f(x)” = z. If we set g(x) = 2. g(f(x)) =z and ¢'(z) = na""'.
Thus,

1
L= (2)' = (9(f(2))) = ¢'(f@)f (@) = n(z'/™)" " f'(x). Therefore, f'(z) = («!/") = —a7 ",
n
It follows from Proposition 6.1 (3) that (x=") = (1/2")" = —nz~""!. Hence if n is a positive integer (%%

%) and m an integer,

m/ny/ _ m m_]
Inverse Function #RI¥ If we solve y = f(z) = 22—1 for 2, we have z = 1(y+1). Let g(y) = 3(y+1).
Then y = f(z) < x = g(y). In this way, if functions f(s), g(t) satisfies t = f(s) « s = g(t), i.e.,
g(f(s)) = s, f(g(t)) = t, we say that g(t) is an inverse function (#iP§%%) of f(s). Note that f(s) is
an inverse function of g(t). We use the same variable and say, for example, the inverse function of
f(z) =2z —1is g(z) = 2(z+1).
Proposition 6.3 Suppose f(s) and g(x) are mutual inverse functions on an interval. Then

dg 1
fla®)g't) =1, or  — = .
@~ ()
Proof. Applying the chain rule to a composite function, f(g(t)) = t, we have f'(g(t))g’'(t) = 1. Here
f'(g(t)) is a derivative with respect to s. [ |

Example 6.3 The inverse function of e* is y = logz (= log, x). Since z = e¥, we have
(logx) = Z—ch = eiy = %
Example 6.4 Find derivatives. f§7¥ X,
1l.y=423+52°> —3z,y =4 (23) +5- (2?) =3 (z)) = 122% + 10z — 3.
2. y =223 —52%2 -3,y =622 — 102.
3y=Br+1) (22 +2+2),y =3@*+2+2)+Br+1)(2v+1) =922 + 8x + 7.
4

Ccy= (2?2 + 1) (2 — 2?), v = 2x(2® — 2?) + (2% + 1)(32?% — 22) = 5a? — 423 + 322 — 22

1, =3
Tr—6 , —T24+120+7
6 y= o T ¥V ="z
x2+1 (x2+1)
1 -1
T.y=——, 9y = —.
LA L (x4 3)2
22
8. y=a%e ="y =2z -z} "
e(lj

9. y==zlogz — =z, y = logx..



PHopital’s Rule If the limit of the right hand side exists, then the limit of the left hand side exists
and the equality holds.

— ! 1
lim 1) = f(a) = lim f/(:v) if fla)=g(a)=0 lim f() = lim f/(x)
Tr—a g xTr) — g(a) Tr—a g ({L‘) Tr—a g(,’L‘ Tr—a g (a’,‘)
We have a semilar result when lim,_., f(z) = o0 lim,_., g(z) = £oo.
Example 6.5 Find the limit of the following using the I'Hopital’s Rule. [Final 2003, II-6, 7]
. 22 +52+6
1. lim ——s———
x——2 3+ 8
2. lim ef—1l+4z
z—0 3x2

6.2 Applications of Derivatives (#%3 DItH)

Definition 6.2 If f(a) > f(z) (resp. f(a) < f(x)) when z is near a, we say that f(a) is a local mazimum
(resp. minimum) of f(z) at x = a. All local maximums and minimums of a function are called local
extrema. K x D%, K oa [ZHmEVE ElX, WIS, fla) > f(z) BRI E E, f(x) X, 2 =a T, MK
K5 L0, fla) ZZDOMAME, W a Z, BRKEEVH, FRIZLT, Mz 2, MallPmive Z
. HIZ, fla) < f(z) DERDIZDEE, f(z) 1Z, 2 =a T, BNZZ S L0, fa) &2 DIMAE, R
a %z, W/NE &9, MORAE & FMEZ G b TRfiE & v,

We distinguish between maximal (or minimal) and local maximum (local minimum). The former is
the max in an interval while the latter is a local max and there may be many. &K - f&/ME. H % X[H

TORNE « AMETZD, FK - H/MIRHIIC A7 iRK - RN TH 5,

Proposition 6.4 (First Derivative Test) Suppose f(x) is differentiable. Then the following hold.
f(x) DMITAIREE T 5, T & ERDVIRLT 5,

(1) If f(x) has a local etrema at x = ¢, then f'(c) = 0. x = ¢ THfiE (FOK F 72 13M/MiE) %R T
f'(e) =0,

(2) If f'(c) > 0, then f(x) is increasing at x = c. f'(c) >0 & 6IEX, f(z) I 2 =c THEIM,
(3) If f'(c) <0, then f(x) is decreasing at x = c. f'(c) <0 % 5I¥, f(z) & 2 =c WD,
(4) If f'(c) = 0, then f(x) is constant. FIZ f'(x) =0 % 61X, f(z) FEHBIE.

As we can tell whether f(x) is increasing or decreasing by the values of f/(z), we can tell whether f/(z)
is increasing or decreasing by the values of f”(x), the derivative of f/(z). Hence we have the following.
f(z) o, WA E, f/(x) OEEAE f(z) (f'(x) DFEBIE) Ik > TH» 5 I E2FE2UL, XD L
Banh 7,

Proposition 6.5 (Second Derivative Test) Suppose f(z) and f'(z) are differentiable. Then the fol-
lowing hold. f(z) \& 2[RI AIBEZABIE E §5, D& ERDBMLT 5,

(1) If f'(c) = 0 and f"(c) <0, then f(c) is a local mazimum. f'(c) =0, f"(c) <0 % 51X, BI% f(x)
i, ¢ THUKME f(c) 2R,

(
(2) If f'(c) =0 and f"(c) > 0, then f(c) is a local minimum. f'(c) =0. f"(c) >0 7= 61X, BIE f(z)
. ¢ THUME f(c) 2D,

Proof. (1) Suppose f'(¢) = 0 and f”(c) < 0. Since f”(x) is the derivative of f'(z), f”(c) < 0 if and
only if f/(z) is decreasing at @ = ¢. It decreases to get f'(¢) = 0 at x = ¢. Hence if z < ¢, f'(x) > 0
and if z > ¢, f'(x) < 0 as far as z is near ¢, Hence when x < ¢, as x approaches to ¢ from left, f(z) is
increasing and f(x) deceases after x passes © = c¢. This implies that f(x) takes a local maximum f(c) at
c.

(2) Similar. Please write a proof in your words. [ |
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Example 6.6 [Local Extrema of f(z) = 2* — 822 4 10] Let us consider local extrema (local maximum
and local minimum) of f(z) = z* — 822 + 10. By Proposition 6.4 (1), if x = ¢ is a local extremum,
f'(¢) = 0. So first find the zeros of f/(x) = 0. In order to determine whether f(c) with f/(¢) =0is a

local maximum or local minimum, or neither.

f(x) = 42® — 162 = 4x(x + 2)(z — 2), f"(2z) = 122% — 16.

Thus f/'(z) = 0 if and only if x = —2,0,2. The values of f”(z) at these points are f”(—2) = 32 > 0,
f7(0) = =16 < 0, f”(2) = 32 > 0. Hence by Proposition 6.5, f(x) has alocal minimum f(—2) = —6 at
r= -2, CHV/ME . =0 THAME f(0) =10, 2 =2 TH/IMH f(2)= -6 2L 22 tbrh T, £

ICHCERDE G2 7,

x —2 0 2
flz) |\ Min. (f&/)\) 7~ 7 Max. (lK) N\, \, Min. (f/h)
ROEE 0 FE— 0 E— 0 T

/ N\ /

[ (@) + - +

Exercises

1. True or false.

[Quiz 6-1, 2002]

(a) If f(x) is differentiable at = a and increasing at z = 2, then f’(a) > 0.

(b) If lim f(z) = fla)

T—a Tr—a

exits, then lim f(z) = f(a).

2. Find derivatives of the following functions y = f(x). XDB% y = f(z) DEEEZ KD K,

(a) y=2a® -3z

(b) y = 32* — 42 — 242% + 482 — 15

(c) y = (2®+ 3z + 1) logx

(d) y = a2

(8) (22 + L)e™"
(h) (22 + D)e=" !

(i) (223 4 5)1°

3. Find the derivative of y = f(x).

(a) y=a%—a

[Quiz 6-1, 2001 (modified)]

[Final 2003, II-9]
[Final 2002, II-10]

[Final 2003, I1-8]

[Quiz 6-1, 2002]



1

(a) To find the derivative of f(z) at © = a using the definition, complete the following.
1 _ 1 2 2
. - . . +1)— (2 +1)
/ — 1 f(x) f(a) — 1 z2+1 a2+1 — 1 (a
fia) e r—a e z-a s (x—a)(z?2+1)(a® +1)

(b) Determine whether f(z) is increasing or decreasing at = = 1.

. Find the equation of the tangent line to the curve y = f(z) at z = a.

(a) y = f(x) =23 — 3z at z = 3. [Quiz 6-2, 2001 (modified)]

(b) y = f(z) =2® — 222 — 52 +6 [E.g. 4.2: (z—2)3 +4(x —2)? — (z — 2) — 4]
1

(C) Yy = m at x = 1. [Flnal 2001, II—G]

. Find the interval where y = f(x) = 23 — 3z is decreasing. B y = f(z) = 2® — 3z DA L T

% x OHiHZ KD X, [Quiz 6-2, 2001]
. Let f(z) = 32° — 2% — 3z + 4. [Quiz 7-1, 2001]

(a) Find f"(z). f"(z) %Ko k.

(b) Find local extrema, i.e., local maxima and local minima, of f(z). f(z) 23K, iz & %
D% KD, Z DR THR» M NDHER X,

(c) Find the maximal value of f(x), and  when f(x) is maximal in the interval [-6,6]. —6 < 2 < 6

T f(z) DEP—FERE L D2DIE z 230 DDRH,

. Let f(z) = 32 — 42® — 1222 + 1. You can use the fact that f/(z) = 1223 — 1222 — 242 =
122(z —2)(z +1). f(zr) =3z — 423 — 1222 +1 L T2 LEDTOMVICEZL L, ZDLEE,
fl(z) =122% — 1222 — 242 = 122(x — 2)(z + 1) TH S Z LIFHVTRY, [Quiz 7-1, 2002]
(a) Find all z satisfying f'(z) =0. f'(x) =0 &% % x ZTXTRKD K,

(b) Find f”(x). f"(z) ZK&d X,

(c) Find local extrema, i.e., determine whether f(x) has a local maximum, local minimum or
neither at the values found in (a). (a) TH L D7K 2 IZDOWVT, f(x) 3K, D>, &
723 EL ST RVLHER X,

(d) Find z with —3 < = < 3 such that f(z) takes the minimal value. —3 <z <3 T f(z) DD’
—HNILKB2DIE 2 DL DDIRED,

. Let f(z) =2%7%. f(x) =22 LT 5, [Quiz 7-2, 2001]
(a) Find f"(z). f"(z) ZKD K,

(b) Find local extrema, local maximum and minimum. f(z) 23K, M/h%z &2 » OfizRD, Z
D TR DN AER Ko

(c) Draw the graph of y = f(z). y = f(x) D7 7 7 OWIEZ T,
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10.

11.

12.

13.

14.

15.

16.

17.

Suppose y = f(x) satisfies f'(¢) =0, f”(¢) = 0 and f"’(¢) = 1. Explain that f(c) is not the local
maximum or local minimum of f(z). B y = f(z) 1Z f'(¢) =0. f"(c)=0. f"(c) =1 ZHi7=§
9%, CDLEE x=cTy= f(z) BHRIZHMNMIS 257452 E2HilE X,

[Quiz 7-3, 2001]

Suppose f(x) = a+b(x—1)+c(x—1)2+d(x—1)? satisfies f(1) = 1, /(1) = =2, f'(1) =6, f(1) =
—4. Find a,b,cand d. f(z)=a+blx—1)+c(zr—1)2+d(x—1)> 23 f(1) =1, /(1) = -2, f"(1) =
6, f///(l) = 4 TR TIE a,b,c,d R X, [Quiz 8-2, 2001]
Let f(x) = 22% — 323 — 2% — 32 4+ 3 = aq(v — 2)* + az(z — 2)3 + az(z — 2)? + a1 (2 — 2) + ao.
[Final 2003, III-2]

(a) Find ag, a1, as,as,aq.

(b) Find f(2), f'(2), f"(2), f"(2), f""(2).

(¢) Find a polynomial of degree 4 satisfying g(2) = 1,¢'(2) =1, ¢"(2) = 2, ¢"(2) = 6, ¢""(2) = 24.
Find z when f(z) = e™* is maximal. f(z) = e »—HREL 22D z OfizkD L,  [Quiz
7-1, 2002]

Suppose a function f(x) satisfies f'(¢) = f”(c) = f"'(¢) = 0 and f""(c) = 7. Explain that f(z) has
a local minimum at x = c. [Final 2002, I-4]
Suppose a function y = f(z) satisfies f'(¢) = 0, f’(c) = 0, f”(¢c) = —1. Determine whether
y = f(z) is maximum, minimum or neither maximum nor minimum. B4% y = f(x) (X f'(c) = 0,
() =0, f"(c)=—-1 ZHilz$T T2, TOLE, 2=c Ty=f(lz) WML T3, @PLT
VB h BARICKR S TW SR, NNk TWEh, ERThhvn, BICHTLECTT v,

[Quiz 7-2, 2002]
Let f(z) = (z — ¢)?g(x) + d, where g(z) and ¢/(z) are differentiable and ¢ and d are constants.
Show that if g(¢) > 0, then f(z) has local minimum d at « = c. [Final 2001, I11-4]
Let f(z) be a function satisfying f/(z) = x(x+1)3(x —2) = 25+ 2% —32% — 522 — 2z and f(0) = —2.

(a) Determine whether f(z) has a local maximum, a local minimum, increasing, or decreasing at
r=-1,0,2.

(b) Find x when f(x) takes the maximal or the minimal value.



7 Integrals
7.1 Antiderivative and Indefinite Integral [RIRBE# & RER S

Definition 7.1 A function F'(z) is said to be an antiderivative of a function f(x) if the derivative of
F(z)is f(z), ie., F'(z) = f(x). BI% F(x) OEBIED, f(x) KHFELWVEE, T4hbb, F(z) = f(z) B
RO X, F(z) . flo) DERBEKE S,

When F(x) is an antiderivative, other anti-derivatives can be written as F(x) + C, where C is a
constant. The collection of all antiderivatives of f(z) is called the indefinite integral of f(z) and is
denoted as follows. C' is called the antiderivative constant. F(z) 7% f(x) DB O O LD TH % L &,
EDDFEIRBIEIE F(2) +C (CIEER) &HSIEWTES, 22T, —DICREE S0, FIHEIK
TRTEZRTEV)ERT, f(z) DAEBDT EWO, RDEHITEL, C 2HIEBRES ).

/f(x)dx =F(z)+C.

1 1
Example 7.1 1. /wadx = ﬁmaﬂ +Cif a# —1, and /fdx =log|z|+ C.
x

o+
2. /ezdxzez—FC.

Exercise 7.1 Find an antiderivative of the following. JRIREIE % K& X,

© ® N>

Exercise 7.2 Find the indefinite integral of the following. N ERE DT Z K &,

1. /<x3+xl4+%)do:
2. /((m+1)5+65w+i> dz

7.2 Definite Integral and Fundamental Theorem of Calculus
EWEDE. WBEDPFOERERE

Definition 7.2 Suppose a function f(z) is a continuous in the interval [a,b]. For a partition A = {a =
xg < x1 < -+ <z, = b} and a set of real numbers {t1,t9,...,t,} with ¢; € [z;_1, 2;], the following sum
is called the Riemann sum.

Ra 13 (f) = Z J(ti)(wg —zi-1).

IS (o) 5 KR [a,8] CHUEETHB ET2, DH A = fa = 20 < a1 < - < @ = b} EFH
t; € [$¢_1,Ii] DEE {tl,tg,...,tn} LT, ki, V—<rMEMENS,
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The Riemann sum approaches to a value I, whenever the largest interval in the partition approaches
0, and [ is called the definite integral of f(x) on [a,b] and denoted as follows.

I= = i ti)(w; — x;-1), where [A| = i — Ti—1|-
/f do= B 5 0) (0 =it where [8] = _ s sy~ z1m
J—= g, 78 A ZBRD <K LTn &, —EDME T 15EDK, I % [a,b] & f(z) DEM
FEFV, Lok HicEL,
When a < b, we make a convention that

/ba f(z)dx = —/abf(x)dm

Proposition 7.1 Suppose functions f(z) and g(x) are continuous on the interval [a,b]. Then the fol-

lowing hold. BI%L f(x) & g(x) 1Z. X[ [a,b] THHEE TS, ZDEE, XD 2D,

oy ' (F(a) + g(@)da = /  flayar 1 / " @)ia.

b b
(2) / k- f(x)dr = k/ f(z)dz. (k: constant)

b b
(3) Suppose f(x) = g(x) whenever a £ x <b. Then / f(x)dx = / g(x)dzx.

Proposition 7.2 (Mean Value Theorem for Definite Integrals (T D V-MEDER)) If a func-
tion f(x) is continuous on a closed interval [a,b], then there is a number ¢ (a < ¢ < b) such that the
following equality holds.

b
/ f(@)dz = (b—a)f(c).
BE%L f(x) A5, PHIXE [a,b] ECHfER 51X, 5. c€(a,b) T, LOFEHFEZRTODLH S,

Theorem 7.3 (Fundamental Theorem of Calculus (#5773 ZDIEEAEM)) Suppose a function f(x)
is continuous on a closed interval [a,b]. Let
x) = / f(x)dx

Then G(x) is an antiderivative of f(x). Moreover if F(z) is an antiderivative of f(z), the following

holds. .
/ F@)dz = F(b) — F(a).

BISC £(x) 7% BIKRE [a,b] CHGETH 2 LT 2, Gx) 1 f(z) DEBBITH 2, 7. F(z) D0
R E T2 &, LK 2D,

Exercise 7.3 Compute the following. X DERT D% KD X,

2
1. / 5dt
0
4
2. / (2t + 5)dt
0
2
1

2
4. / (42> + x +5)dz
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2
5. / (x —2)5dx
0
€2
6. / —du
1 u
1
7. / e “du
0

Exercise 7.4 Let f(x) = (2% + 2z + 2)%. Find the following.
L f()

1
2(/(%+&ﬂﬁ+t+%%ﬁ
—1
3. F'(x) when F(x):/ (2t + 1)(2 + t +2)%dt
0

7.3 Differential Equations {95 1ERX

An equation involving a function y = f(z) together with its derivatives y' = f'(x) (and f”(z), f"'(x),...)
is called a differential equation. We study a separable type as an example. An objective of considering a
differential equation is to find y = f(z) satisfying the equation together with additional conditions. We
often write dy/dx for y' = f'(x). B vy = f(z) DEEAB o = f/(x) (F7iX, o, v & £ OEFEEEIE)
N Fin s B2 MR (differential equation) &5 9. Z DT HIEARWTHDISHG S % 7
4 (separable type) IZDWTDRS, y= f(z) £T5 L&, y DEBZ dy/de £EL I EVDH B, WIT
AL, y= f(x) Z2KDBZEDVHINTD 5,

Example 7.2 Find y = f(z) satisfying the following conditions. f(0) = ¢ is called an initial condition.
ROFEMZT2T, y= f(z) ZRKD DB, f(0)=c Z¥IEMAELEF I,

= g(%), f(O) =G €.g. g(l‘) = 2z, f(O) =

If G(x) is an antiderivative, y = f(z) = G(z) + C, and ¢ = f(0) = G(0) + C. Hence C = C—G(O)
and y = f(z) = G(z )+C—G(0. When g(z) = 22 and f(0) = 1, y = f(z) = 22 + 1. G(x) & g(x)
DFIBBD—D2 T2 L, y=f(2) =G@)+Co ¢c= f(0)=G0)+C &H C=c—-G(0) £%&D,
y=f(z)=G(x)+c—G0) 2135, BITIE Gz) =2 LN 25, y= f(z)

d

(
Proposition 7.4 Let H(x) be an antiderivative of a function h(x) and G(y) an antiderivative of g(y).
H(z) z B h(z) DIRGBIE. Gly) 2 BI% g(y) DEBEI%E § 5,

_dy _ h(z) _ H(x
= =gy =W =H@+C

Proof. Let y = f(x). Then G(y) = G(f(z)). If we differentiate both hand sides using the chain rule,

we have
(G(f(@)) =G W) f'(x) = g(y)y" = h(z) = H ()
Therefore, G(y) = G(f(z)) = H(x) + C. [ |

h(z)
a(y)
compute [ g(y)dy = [ h(z)dz. By our assumption, we have G(y) = H(z)+C as G(y) is an antiderivative

of g(y) and G(x) is an antlderivative of h(x). Note that two antiderivatives of a function differ only by a
constant. To rationalize this process we need to develop a theory of so called ‘differentials’ to deal with
dx or dy. These equations are called separable type.

ZofmdEld, Witz TWAIC g(y)dy = h(z)de EZTEL. [g(y)dy = [ h(x)de ERET L 7
RIPFELWZ E2TRL TS, EEloBoMa ifA2 il e v ),

Suppose we formally write our equation % = as g(y)dy = h(x)dz by multiplying dz and ¢(y), and
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Example 7.3 Let y denote the population at time z.

(1) Z—i = ky, (2) Z—Z = k(N —vy), (3) Z—Z = %(N -4y, k: constant
If there is no constraint, (1) holds. Here k is the difference between birth rate and death rate. If the
space is limited, there is an upper bound of population, which is called carrying capacity (AI$HEET])
and denoted by N. When the population is close to this bound, (2) holds. Since there is a lower bound
as well, by combining these, (3) holds in general. It is called the logistic model. All of these are separable
type differential equations.

N 1 1 Y
kx+0=/k:d:c=/7d :/7+7d:10 —log(N — y) = log(~—2—).
&= (y ny) y = logy — log(N —y) g(ny)

Let 5o be the value of y at 2 = 0. Then e“ = yo/(N — 1), and we have the following.

N N N —
e]mH_C _ Y Ly = — b= Yo — e—C.
N—y 14 e ho=C 14 pe—h Yo

Exercises

1. Find the following indefinite integrals. [Quiz 8-3, 2001, modified]
1
(a) /(z2+1+f2>dx
x
(b) /eszﬂd:c
() / (32 + 2)0dz
(d) /xz(w — e 3dx (Hint y = 23e73%)

2. Find the following. [Quiz 8-5, 2002]

(a) /(x7 +22° — x4 1)dz
(b) /(e’” + %)dw
(c) /(3:5 + 2)*dx

(d) /02(296 — 2%)dx

4

(e) [ Vadx

1

6z .



3. Find the following.. [Quiz 8-5, 2003]

(a) /(ac3 + 5z — 3)dx

4. Find the following. [Quiz 8-1, 2, 3, 2002]

(a) The derivative of f(z) = (z2 + 1)6””2.

(b) F'(x) when F(z) = /Om(t2 + l)etzdt.

(©) / 20?4+ 2)e” da

5. Find the following [Quiz 8-1, 2, 3, 2003]
(a) The derivative of f(z) = (22 4+ 1)1°.

"(z), when F(x) = N 1044,
(b) F'(x), when F(z) /O(t + 1)
(c) /x(x2—|—1)9da:

6. Suppose y = f(x) satisfies v’ = f/(z) = 32% — 1. [Quiz 8-1, 2001]
(a) Find f(z), when f(0) = 1.

(b) Draw three graphs of y = f(z) satisfying f(0) =1, f(1) =2 and f(-1) = —1.
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7. Determine the following functions.

(a) f(z) when f/(x) = 22® — z and f(0) = 1.

[Quiz 8-4, 2002]

(b) g(z) satisfying ¢'(z) = 2°(z — 2)(x + 2) = 2° — 42 and ¢(0) = 1. [Final 2001, I1I-5, modified]

(c) h(x) satisfying h/(z) = 5z* + 2z + 1, h(1) = 4.

8. Find the following.

(a) /<x3+1+ \;E)dm

1,2
o | G

(c) /0 (22 — 1)°dx

(d) F'(z), when F(z) = /1 I(t2+1)e’t2’1dt.

(e) /<6x2 +1+ ;5) da

(f) /x2(2m3 +5)%dx

() /0 (32 + 2)*da

(h) F’'(x), when F(z) = /ac (2t + 1)e_t3dt.

-2

(i) /<5x4+1+j53\/5)dm

0 | e

(k) /1 10(2z + 1)*dx
0

(1) F'(z), when F(z) = /_2(152 + 5)etdt.

[Quiz 8-4, 2003]

[Final 2002, 1I-11]

[Final 2002, 11-12]

[Final 2002, 1I-13]

[Final 2002, 1I-14]

[Final 2003, 1I-10]

[Final 2003, 1I-11]

[Final 2003, II-12]

[Final 2003, 1I-13]

[Final 2004, 1I-12]

[Final 2004, 1I-13]

[Final 2004, I1-14]

[Final 2004, 11-15]



