[INPUT]
U:= function(n)
G, psi:=UnitGroup(ResidueClassRing(n));
return G, psi, Inverse(psi);
end function;
"U(25) ";
Order(U(25)); O25:={Order(g): g in U(25)}; O25, "|U(25)|=", #O25;
"IsCyclic? ", IsCyclic(U(25));
" ";
"U(32) ";
U32, psi, phi := U(32);
"IsCyclic? ", IsCyclic(U32);
"Order of Generators? ";
for i in {1..#Generators(U32)} do
Order(U32.i);
end for;
"|5| =", Order(phi(5));
[INPUT]
S:=SymmetricGroup(10); A:=AlternatingGroup(10);
"|S_n|=", Order(S); {Order(g): g in S};
"|A_n|=", Order(A); {Order(g): g in A};
[INPUT]
S:=SymmetricGroup(6);
Q:= {g : g in S | Order(g) eq 4}; #Q;
I:={g : g in S | Order(g) eq 2}; #I;
[INPUT] S:=SymmetricGroup(13); a:=S!(1,2,8,12,4,3,7,6,13,11,5,10,9); b:=a^(-1); [1,2,3,4,5,6,7,8,9,10,11,12,13]^b; [1,2,3,4,5,6,7,8,9,10,11,12,13]^(b^2);
[INPUT]
G:=DirectProduct([CyclicGroup(12), CyclicGroup(20), CyclicGroup(10)]);
C20:= Subgroups(G: OrderEqual:=20, IsCyclic:=true);
S20:= Subgroups(G: OrderEqual:=20);
T20:= {x: x in G | Order(x) eq 20};
"Number of Cyclic Subgroups of Order 20 = ",#C20;
"Number of Subgroup of Order 20 = ", #S20;
"Number of Elements of Order 20 = ", #T20;
for i in [1..5] do C20[i]; end for;
[INPUT] /* Polynomial Ring */ P:=PolynomialRing(Integers()); /* Square */ square:=Graph<4 | {1,2}, {2,3}, {3,4}, {4,1}>; /* g44 */ g44:=Graph<4 | {1,2}, {2,3}, {3,1}, {4,1}>; CharacteristicPolynomial(square); Factorization(CharacteristicPolynomial(square)); Spectrum(square); " "; CharacteristicPolynomial(g44); Factorization(CharacteristicPolynomial(g44)); Spectrum(g44);
[INPUT]
/* Square */
square:=Graph<4 | {1,2}, {2,3}, {3,4}, {4,1}>;
as:=AdjacencyMatrix(square); "cube "; as;
"as2 = "; as^2; "as3 = "; as^3; "as4 = "; as^4;
" ";
/* g44 */
g44:=Graph<4 | {1,2}, {2,3}, {3,1}, {4,1}>;
ag:=AdjacencyMatrix(g44); "g44 "; ag;
"ag2 = "; ag^2; "ag3 = "; ag^3; "ag4 = "; ag^4;
[INPUT] Q := Rationals(); m := SFAMonomial(Q); E := SFAElementary(Q); E!m.[2]; E!m.[3]; P:=PolynomialRing(Q,3); (x+y+z)^3-3*(x*y+y*z+z*x)*(x+y+z) + 3*x*y*z eq x^3+y^3+z^3; Factorization((x+y+z)^3-3*(x*y+y*z+z*x)*(x+y+z) + 3*x*y*z);
{INPUT]
g44:=Graph<4 | {1,2}, {2,3}, {3,1}, {4,1}>;
lg44:=LineGraph(g44);
"Adjacency Matrix of g44:";
AdjacencyMatrix(g44);
" ";
"Adjacency Matrix of the Line Graph of g44:";
AdjacencyMatrix(lg44);
" ";
"Incidence Matrix of g44:";
X:=IncidenceMatrix(g44); X;
" ";
"XX^t:= ", X*Transpose(X);
" ";
"X^tX:= ", Transpose(X)*X;
[INPUT] Z8<a>:=CyclicGroup(8);
C81:=sub<Z8 | a, a^4, a^7>;
G1:=UnderlyingGraph(CayleyGraph(C81));
C82:=sub<Z8 | a^2, a^4, a^6>;
G2:=UnderlyingGraph(CayleyGraph(C82));
C83:=sub<Z8 | a^3, a^4, a^5>;
G3:=UnderlyingGraph(CayleyGraph(C83));
OG1:=OrbitalGraph(Z8, 1, {2, 5, 8});
OG2:=OrbitalGraph(Z8, 1, {3, 5, 7});
OG3:=OrbitalGraph(Z8, 1, {4, 5, 6});
IsIsomorphic(G1, OG1), IsIsomorphic(G2, OG2), IsIsomorphic(G3, OG3);
IsIsomorphic(OG1, OG2), IsIsomorphic(OG1, OG3), IsIsomorphic(OG2, OG3);
G2; OG2;
[INPUT]
/* The following five 3-regular connected graphs on 8 vertices were generated by F:=GenerateGraphs(8: Connected:=true, MinDeg:=3, MaxDeg:=3);
t, G:=NextGraph(F); Edges(G); */
RG81:=Graph<8 | {1, 5}, {1, 6}, {1, 7}, {2, 5}, {2, 6}, {2, 8}, {3, 5}, {3, 7}, {3, 8}, {4, 6}, {4, 7}, {4, 8} >;
RG82:=Graph<8 | {1, 4}, {1, 5}, {1, 6}, {2, 5}, {2, 6}, {2, 7}, {3, 6}, {3, 7}, {3, 8}, {4, 7}, {4, 8}, {5, 8} >;
RG83:=Graph<8 | {1, 4}, {1, 6}, {1, 8}, {2, 5}, {2, 6}, {2, 7}, {3, 5}, {3, 7}, {3, 8}, {4, 7}, {4, 8}, {5, 6} >;
RG84:=Graph<8 | {1, 4}, {1, 7}, {1, 8}, {2, 5}, {2, 6}, {2, 7}, {3, 5}, {3, 6}, {3, 8}, {4, 7}, {4, 8}, {5, 6} >;
RG85:=Graph<8 | {1, 4}, {1, 6}, {1, 7}, {2, 5}, {2, 7}, {2, 8}, {3, 5}, {3, 7}, {3, 8}, {4, 6}, {4, 8}, {5, 6} >;
IsIsomorphic(RG81,RG82), IsIsomorphic(RG81,RG83), IsIsomorphic(RG81,RG84), IsIsomorphic(RG81,RG85), IsIsomorphic(RG82,RG83), IsIsomorphic(RG82,RG84), IsIsomorphic(RG82,RG85), IsIsomorphic(RG83,RG84), IsIsomorphic(RG83,RG85),
IsIsomorphic(RG84,RG85);
RG8:=[RG81, RG82, RG83, RG84, RG85];
" ";
Z8:=CyclicGroup(8);
OG1:=OrbitalGraph(Z8, 1, {2, 5, 8});
for i in [1..#RG8] do IsIsomorphic(OG1, RG8[i]); end for;
[INPUT]
G:=Graph<13 | {10,1}, {10,2}, {10,4}, {10,5}, {10,7}, {10,8}, {1,2}, {2,3}, {3,4}, {4,5}, {5,6}, {6,7}, {7,8}, {8,9}, {9,1}, {1,11}, {4,12}, {7,13}>;
AutomorphismGroup(G);